Martin Conda-Sheridan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11878998/publications.pdf

Version: 2024-02-01

759233 940533 16 479 12 16 citations h-index g-index papers 16 16 16 621 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis and Biological Evaluation of the First Dual Tyrosyl-DNA Phosphodiesterase I (Tdp1)–Topoisomerase I (Top1) Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 4457-4478.	6.4	85
2	Potential Chemopreventive Agents Based on the Structure of the Lead Compound 2-Bromo-1-hydroxyphenazine, Isolated from <i>Streptomyces</i> Species, Strain CNS284. Journal of Medicinal Chemistry, 2010, 53, 8688-8699.	6.4	69
3	Synthesis and Biological Evaluation of Indenoisoquinolines That Inhibit Both Tyrosyl-DNA Phosphodiesterase I (Tdp1) and Topoisomerase I (Top1). Journal of Medicinal Chemistry, 2013, 56, 182-200.	6.4	65
4	A review of the molecular design and biological activities of RXR agonists. Medicinal Research Reviews, 2019, 39, 1372-1397.	10.5	42
5	Synthesis, biological evaluation, and metabolic stability of phenazine derivatives as antibacterial agents. European Journal of Medicinal Chemistry, 2018, 143, 936-947.	5.5	36
6	Induction of Retinoid X Receptor Activity and Consequent Upregulation of p21WAF1/CIP1 by Indenoisoquinolines in MCF7 Cells. Cancer Prevention Research, 2011, 4, 592-607.	1.5	30
7	Self-Assembled Nanostructures of Peptide Amphiphiles: Charge Regulation by Size Regulation. Journal of Physical Chemistry C, 2019, 123, 17606-17615.	3.1	30
8	Identification, Synthesis, and Biological Evaluation of the Metabolites of 3-Amino-6-(3′-aminopropyl)-5H-indeno[1,2-c]isoquinoline-5,11-(6H)dione (AM6–36), a Promising Rexinoid Lead Compound for the Development of Cancer Chemotherapeutic and Chemopreventive Agents. Journal of Medicinal Chemistry, 2012, 55, 5965-5981.	6.4	22
9	Design, Synthesis, and Biological Evaluation of Indenoisoquinoline Rexinoids with Chemopreventive Potential. Journal of Medicinal Chemistry, 2013, 56, 2581-2605.	6.4	22
10	Simple synthesis of endophenazine G and other phenazines and their evaluation as anti-methicillin-resistant Staphylococcus aureus agents. European Journal of Medicinal Chemistry, 2017, 125, 710-721.	5.5	19
11	Molecular Basis for the Morphological Transitions of Surfactant Wormlike Micelles Triggered by Encapsulated Nonpolar Molecules. Langmuir, 2021, 37, 3093-3103.	3.5	13
12	Cancer chemopreventive potential of aromathecins and phenazines, novel natural product derivatives. Anticancer Research, 2010, 30, 4873-82.	1.1	12
13	Induction of Apoptosis by 3-Amino-6-(3-aminopropyl)-5,6-dihydro-5,11-dioxo-11 <i>H</i> - indeno[1,2- <i><c i="">) isoquinoline via Modulation of MAPKs (p38 and c-Jun N-terminal Kinase) and c-Myc in HL-60 Human Leukemia Cells. lournal of Natural Products. 2012. 75. 378-384.</c></i>	3.0	11
14	Scission energies of surfactant wormlike micelles loaded with nonpolar additives. Journal of Colloid and Interface Science, 2021, 604, 757-766.	9.4	10
15	Control of Peptide Amphiphile Supramolecular Nanostructures by Isosteric Replacements. Biomacromolecules, 2021, 22, 3274-3283.	5.4	8
16	Twisting of Charged Nanoribbons to Helicoids Driven by Electrostatics. Journal of Physical Chemistry B, 2020, 124, 3221-3227.	2.6	5