
Christian Richard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11876052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sarilumab in adults hospitalised with moderate-to-severe COVID-19 pneumonia (CORIMUNO-SARI-1): An open-label randomised controlled trial. Lancet Rheumatology, The, 2022, 4, e24-e32.	2.2	34
2	Effect of Tocilizumab vs Usual Care in Adults Hospitalized With COVID-19 and Moderate or Severe Pneumonia. JAMA Internal Medicine, 2021, 181, 32.	2.6	654
3	Extracorporeal membrane oxygenation network organisation and clinical outcomes during the COVID-19 pandemic in Greater Paris, France: a multicentre cohort study. Lancet Respiratory Medicine,the, 2021, 9, 851-862.	5.2	163
4	The effects of passive leg raising may be detected by the plethysmographic oxygen saturation signal in critically ill patients. Critical Care, 2019, 23, 19.	2.5	66
5	What is the lowest change in cardiac output that transthoracic echocardiography can detect?. Critical Care, 2019, 23, 116.	2.5	74
6	Esophageal Doppler Can Predict Fluid Responsiveness Through End-Expiratory and End-Inspiratory Occlusion Tests. Critical Care Medicine, 2019, 47, e96-e102.	0.4	32
7	Intra-Abdominal Hypertension Is Responsible for False Negatives to the Passive Leg Raising Test. Critical Care Medicine, 2019, 47, e639-e647.	0.4	46
8	Validation and Critical Evaluation of the Effective Arterial Elastance in Critically Ill Patients. Critical Care Medicine, 2019, 47, e317-e324.	0.4	15
9	Carotid and femoral Doppler do not allow the assessment of passive leg raising effects. Annals of Intensive Care, 2018, 8, 67.	2.2	23
10	Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2018, 378, 1965-1975.	13.9	1,563
11	Predicting Fluid Responsiveness in Critically III Patients by Using Combined End-Expiratory and End-Inspiratory Occlusions With Echocardiography. Critical Care Medicine, 2017, 45, e1131-e1138.	0.4	66
12	The passive leg raising test to guide fluid removal in critically ill patients. Annals of Intensive Care, 2016, 6, 46.	2.2	65
13	Effects of passive leg raising and volume expansion on mean systemic pressure and venous return in shock in humans. Critical Care, 2015, 19, 411.	2.5	50
14	Passive leg raising performed before a spontaneous breathing trial predicts weaning-induced cardiac dysfunction. Intensive Care Medicine, 2015, 41, 487-494.	3.9	35
15	Transpulmonary Thermodilution Enables to Detect Small Short-Term Changes in Extravascular Lung Water Induced by a Bronchoalveolar Lavage. Critical Care Medicine, 2014, 42, 1869-1873.	0.4	19
16	Extravascular Lung Water, B-Type Natriuretic Peptide, and Blood Volume Contraction Enable Diagnosis of Weaning-Induced Pulmonary Edema*. Critical Care Medicine, 2014, 42, 1882-1889.	0.4	48
17	Beneficial Hemodynamic Effects of Prone Positioning in Patients with Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1428-1433.	2.5	172
18	End-tidal carbon dioxide is better than arterial pressure for predicting volume responsiveness by the passive leg raising test. Intensive Care Medicine, 2013, 39, 93-100.	3.9	124

CHRISTIAN RICHARD

#	Article	IF	CITATIONS
19	End-Expiratory Occlusion Test Predicts Preload Responsiveness Independently of Positive End-Expiratory Pressure During Acute Respiratory Distress Syndrome. Critical Care Medicine, 2013, 41, 1692-1701.	0.4	59
20	Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome*. Critical Care Medicine, 2013, 41, 472-480.	0.4	219
21	Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance*. Critical Care Medicine, 2012, 40, 152-157.	0.4	196
22	Effects of norepinephrine on mean systemic pressure and venous return in human septic shock*. Critical Care Medicine, 2012, 40, 3146-3153.	0.4	173
23	The estimation of cardiac output by the Nexfin device is of poor reliability for tracking the effects of a fluid challenge. Critical Care, 2012, 16, R212.	2.5	80
24	Precision of the transpulmonary thermodilution measurements. Critical Care, 2011, 15, R204.	2.5	151
25	Norepinephrine increases cardiac preload and reduces preload dependency assessed by passive leg raising in septic shock patients*. Critical Care Medicine, 2011, 39, 689-694.	0.4	151
26	Arterial pressure allows monitoring the changes in cardiac output induced by volume expansion but not by norepinephrine*. Critical Care Medicine, 2011, 39, 1394-1399.	0.4	100
27	Pulmonary artery catheter monitoring in 2011. Current Opinion in Critical Care, 2011, 17, 296-302.	1.6	52
28	Changes in pulse pressure following fluid loading: a comparison between aortic root (non-invasive) Tj ETQq0 C	0 rgBT/Ov	erlock 10 Tf 5
29	Hemodynamic impact of a positive end-expiratory pressure setting in acute respiratory distress syndrome: Importance of the volume status*. Critical Care Medicine, 2010, 38, 802-807.	0.4	157
30	Arterial pressure-based cardiac output in septic patients: different accuracy of pulse contour and uncalibrated pressure waveform devices. Critical Care, 2010, 14, R109.	2.5	120
31	Early administration of norepinephrine increases cardiac preload and cardiac output in septic patients with life-threatening hypotension. Critical Care, 2010, 14, R142.	2.5	165
32	Passive leg raising for predicting fluid responsiveness: importance of the postural change. Intensive Care Medicine, 2009, 35, 85-90.	3.9	207
33	Incidence and prognostic value of right ventricular failure in acute respiratory distress syndrome. Intensive Care Medicine, 2009, 35, 69-76.	3.9	138
34	Cardiac function index provided by transpulmonary thermodilution behaves as an indicator of left ventricular systolic function. Critical Care Medicine, 2009, 37, 2913-2918.	0.4	64
35	Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Critical Care Medicine, 2009, 37, 951-956.	0.4	261
36	Critical care management and outcome of severe Pneumocystis pneumonia in patients with and without HIV infection. Critical Care, 2008, 12, P28	2.5	147

without HIV infection. Critical Care, 2008, 12, R28.

CHRISTIAN RICHARD

#	Article	IF	CITATIONS
37	Effects of changes in vascular tone on the agreement between pulse contour and transpulmonary thermodilution cardiac output measurements within an up to 6-hour calibration-free period*. Critical Care Medicine, 2008, 36, 434-440.	0.4	157
38	Measuring aortic diameter improves accuracy of esophageal Doppler in assessing fluid responsiveness. Critical Care Medicine, 2007, 35, 477-482.	0.4	81
39	Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge*. Critical Care Medicine, 2007, 35, 64-68.	0.4	661
40	Cardiopulmonary interactions in patients with heart failure. Current Opinion in Critical Care, 2007, 13, 6-11.	1.6	31
41	Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS. Intensive Care Medicine, 2007, 33, 448-453.	3.9	246
42	Year in review in Intensive Care Medicine, 2006. II. Infections and sepsis, haemodynamics, elderly, invasive and noninvasive mechanical ventilation, weaning, ARDS. Intensive Care Medicine, 2007, 33, 214-229.	3.9	19
43	Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Medicine, 2007, 33, 1125-1132.	3.9	316
44	Contribution of arterial stiffness and stroke volume to peripheral pulse pressure in ICU patients: an arterial tonometry study. Intensive Care Medicine, 2007, 33, 1931-1937.	3.9	32
45	Relationship between the tricuspid annular plane systolic excursion and right and left ventricular function in critically ill patients. Intensive Care Medicine, 2007, 33, 2143-2149.	3.9	70
46	Passive leg raising predicts fluid responsiveness in the critically ill*. Critical Care Medicine, 2006, 34, 1402-1407.	0.4	1,238
47	How to diagnose weaning-induced pulmonary edema?. Intensive Care Medicine, 2006, 32, 938-938.	3.9	5
48	Esophageal Doppler monitoring predicts fluid responsiveness in critically ill ventilated patients. Intensive Care Medicine, 2005, 31, 1195-1201.	3.9	777
49	Clinical review: interpretation of arterial pressure wave in shock states. Critical Care, 2005, 9, 601.	2.5	198
50	Influence of tidal volume on stroke volume variation. Does it really matter?. Intensive Care Medicine, 2003, 29, 1613-1613.	3.9	29
51	Early Use of the Pulmonary Artery Catheter and Outcomes in Patients With Shock and Acute Respiratory Distress Syndrome <subtitle>A Randomized Controlled Trial</subtitle> . JAMA - Journal of the American Medical Association, 2003, 290, 2713.	3.8	597
52	Global End-Diastolic Volume as an Indicator of Cardiac Preload in Patients With Septic Shock *. Chest, 2003, 124, 1900-1908.	0.4	357
53	Changes in BP Induced by Passive Leg Raising Predict Response to Fluid Loading in Critically III Patients. Chest, 2002, 121, 1245-1252.	0.4	343
54	Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Critical Care Medicine, 2000, 28, 3631-3636.	0.4	142

#	Article	IF	CITATIONS
55	Relation between Respiratory Changes in Arterial Pulse Pressure and Fluid Responsiveness in Septic Patients with Acute Circulatory Failure. American Journal of Respiratory and Critical Care Medicine, 2000, 162, 134-138.	2.5	2,071
56	Clinical Use of Respiratory Changes in Arterial Pulse Pressure to Monitor the Hemodynamic Effects of PEEP. American Journal of Respiratory and Critical Care Medicine, 1999, 159, 935-939.	2.5	348