Christian Richard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11876052/publications.pdf

Version: 2024-02-01

57719 149623 13,443 56 44 56 citations h-index g-index papers 56 56 56 7928 docs citations times ranked citing authors all docs

#	Article	lF	Citations
1	Relation between Respiratory Changes in Arterial Pulse Pressure and Fluid Responsiveness in Septic Patients with Acute Circulatory Failure. American Journal of Respiratory and Critical Care Medicine, 2000, 162, 134-138.	2.5	2,071
2	Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2018, 378, 1965-1975.	13.9	1,563
3	Passive leg raising predicts fluid responsiveness in the critically ill*. Critical Care Medicine, 2006, 34, 1402-1407.	0.4	1,238
4	Esophageal Doppler monitoring predicts fluid responsiveness in critically ill ventilated patients. Intensive Care Medicine, 2005, 31, 1195-1201.	3.9	777
5	Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge*. Critical Care Medicine, 2007, 35, 64-68.	0.4	661
6	Effect of Tocilizumab vs Usual Care in Adults Hospitalized With COVID-19 and Moderate or Severe Pneumonia. JAMA Internal Medicine, 2021, 181, 32.	2.6	654
7	Early Use of the Pulmonary Artery Catheter and Outcomes in Patients With Shock and Acute Respiratory Distress Syndrome <subtitle>A Randomized Controlled Trial</subtitle> . JAMA - Journal of the American Medical Association, 2003, 290, 2713.	3.8	597
8	Global End-Diastolic Volume as an Indicator of Cardiac Preload in Patients With Septic Shock *. Chest, 2003, 124, 1900-1908.	0.4	357
9	Clinical Use of Respiratory Changes in Arterial Pulse Pressure to Monitor the Hemodynamic Effects of PEEP. American Journal of Respiratory and Critical Care Medicine, 1999, 159, 935-939.	2.5	348
10	Changes in BP Induced by Passive Leg Raising Predict Response to Fluid Loading in Critically Ill Patients. Chest, 2002, 121, 1245-1252.	0.4	343
11	Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Medicine, 2007, 33, 1125-1132.	3.9	316
12	Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Critical Care Medicine, 2009, 37, 951-956.	0.4	261
13	Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS. Intensive Care Medicine, 2007, 33, 448-453.	3.9	246
14	Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome*. Critical Care Medicine, 2013, 41, 472-480.	0.4	219
15	Passive leg raising for predicting fluid responsiveness: importance of the postural change. Intensive Care Medicine, 2009, 35, 85-90.	3.9	207
16	Clinical review: interpretation of arterial pressure wave in shock states. Critical Care, 2005, 9, 601.	2.5	198
17	Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance*. Critical Care Medicine, 2012, 40, 152-157.	0.4	196
18	Effects of norepinephrine on mean systemic pressure and venous return in human septic shock*. Critical Care Medicine, 2012, 40, 3146-3153.	0.4	173

#	Article	IF	CITATIONS
19	Beneficial Hemodynamic Effects of Prone Positioning in Patients with Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1428-1433.	2.5	172
20	Early administration of norepinephrine increases cardiac preload and cardiac output in septic patients with life-threatening hypotension. Critical Care, 2010, 14, R142.	2.5	165
21	Extracorporeal membrane oxygenation network organisation and clinical outcomes during the COVID-19 pandemic in Greater Paris, France: a multicentre cohort study. Lancet Respiratory Medicine, the, 2021, 9, 851-862.	5.2	163
22	Effects of changes in vascular tone on the agreement between pulse contour and transpulmonary thermodilution cardiac output measurements within an up to 6-hour calibration-free period*. Critical Care Medicine, 2008, 36, 434-440.	0.4	157
23	Hemodynamic impact of a positive end-expiratory pressure setting in acute respiratory distress syndrome: Importance of the volume status*. Critical Care Medicine, 2010, 38, 802-807.	0.4	157
24	Precision of the transpulmonary thermodilution measurements. Critical Care, 2011, 15, R204.	2.5	151
25	Norepinephrine increases cardiac preload and reduces preload dependency assessed by passive leg raising in septic shock patients*. Critical Care Medicine, 2011, 39, 689-694.	0.4	151
26	Critical care management and outcome of severe Pneumocystis pneumonia in patients with and without HIV infection. Critical Care, 2008, 12, R28.	2.5	147
27	Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Critical Care Medicine, 2000, 28, 3631-3636.	0.4	142
28	Incidence and prognostic value of right ventricular failure in acute respiratory distress syndrome. Intensive Care Medicine, 2009, 35, 69-76.	3.9	138
29	End-tidal carbon dioxide is better than arterial pressure for predicting volume responsiveness by the passive leg raising test. Intensive Care Medicine, 2013, 39, 93-100.	3.9	124
30	Arterial pressure-based cardiac output in septic patients: different accuracy of pulse contour and uncalibrated pressure waveform devices. Critical Care, 2010, 14, R109.	2.5	120
31	Arterial pressure allows monitoring the changes in cardiac output induced by volume expansion but not by norepinephrine*. Critical Care Medicine, 2011, 39, 1394-1399.	0.4	100
32	Measuring aortic diameter improves accuracy of esophageal Doppler in assessing fluid responsiveness. Critical Care Medicine, 2007, 35, 477-482.	0.4	81
33	The estimation of cardiac output by the Nexfin device is of poor reliability for tracking the effects of a fluid challenge. Critical Care, 2012, 16, R212.	2.5	80
34	What is the lowest change in cardiac output that transthoracic echocardiography can detect?. Critical Care, 2019, 23, 116.	2.5	74
35	Relationship between the tricuspid annular plane systolic excursion and right and left ventricular function in critically ill patients. Intensive Care Medicine, 2007, 33, 2143-2149.	3.9	70
36	Predicting Fluid Responsiveness in Critically Ill Patients by Using Combined End-Expiratory and End-Inspiratory Occlusions With Echocardiography. Critical Care Medicine, 2017, 45, e1131-e1138.	0.4	66

#	Article	IF	CITATIONS
37	The effects of passive leg raising may be detected by the plethysmographic oxygen saturation signal in critically ill patients. Critical Care, 2019, 23, 19.	2.5	66
38	The passive leg raising test to guide fluid removal in critically ill patients. Annals of Intensive Care, 2016, 6, 46.	2.2	65
39	Cardiac function index provided by transpulmonary thermodilution behaves as an indicator of left ventricular systolic function. Critical Care Medicine, 2009, 37, 2913-2918.	0.4	64
40	End-Expiratory Occlusion Test Predicts Preload Responsiveness Independently of Positive End-Expiratory Pressure During Acute Respiratory Distress Syndrome. Critical Care Medicine, 2013, 41, 1692-1701.	0.4	59
41	Pulmonary artery catheter monitoring in 2011. Current Opinion in Critical Care, 2011, 17, 296-302.	1.6	52
42	Effects of passive leg raising and volume expansion on mean systemic pressure and venous return in shock in humans. Critical Care, 2015, 19, 411.	2.5	50
43	Extravascular Lung Water, B-Type Natriuretic Peptide, and Blood Volume Contraction Enable Diagnosis of Weaning-Induced Pulmonary Edema*. Critical Care Medicine, 2014, 42, 1882-1889.	0.4	48
44	Intra-Abdominal Hypertension Is Responsible for False Negatives to the Passive Leg Raising Test. Critical Care Medicine, 2019, 47, e639-e647.	0.4	46
45	Changes in pulse pressure following fluid loading: a comparison between aortic root (non-invasive) Tj ETQq1 1	0.78 <u>4</u> 314 ı	gBŢ/Overlo
46	Passive leg raising performed before a spontaneous breathing trial predicts weaning-induced cardiac dysfunction. Intensive Care Medicine, 2015, 41, 487-494.	3.9	35
47	Sarilumab in adults hospitalised with moderate-to-severe COVID-19 pneumonia (CORIMUNO-SARI-1): An open-label randomised controlled trial. Lancet Rheumatology, The, 2022, 4, e24-e32.	2.2	34
48	Contribution of arterial stiffness and stroke volume to peripheral pulse pressure in ICU patients: an arterial tonometry study. Intensive Care Medicine, 2007, 33, 1931-1937.	3.9	32
49	Esophageal Doppler Can Predict Fluid Responsiveness Through End-Expiratory and End-Inspiratory Occlusion Tests. Critical Care Medicine, 2019, 47, e96-e102.	0.4	32
50	Cardiopulmonary interactions in patients with heart failure. Current Opinion in Critical Care, 2007, 13, 6-11.	1.6	31
51	Influence of tidal volume on stroke volume variation. Does it really matter?. Intensive Care Medicine, 2003, 29, 1613-1613.	3.9	29
52	Carotid and femoral Doppler do not allow the assessment of passive leg raising effects. Annals of Intensive Care, 2018, 8, 67.	2.2	23
53	Year in review in Intensive Care Medicine, 2006. II. Infections and sepsis, haemodynamics, elderly, invasive and noninvasive mechanical ventilation, weaning, ARDS. Intensive Care Medicine, 2007, 33, 214-229.	3.9	19
54	Transpulmonary Thermodilution Enables to Detect Small Short-Term Changes in Extravascular Lung Water Induced by a Bronchoalveolar Lavage. Critical Care Medicine, 2014, 42, 1869-1873.	0.4	19

#	Article	IF	CITATIONS
55	Validation and Critical Evaluation of the Effective Arterial Elastance in Critically Ill Patients. Critical Care Medicine, 2019, 47, e317-e324.	0.4	15
56	How to diagnose weaning-induced pulmonary edema?. Intensive Care Medicine, 2006, 32, 938-938.	3.9	5