
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1187388/publications.pdf Version: 2024-02-01

ANDREWT HUDAK

#	Article	IF	CITATIONS
1	Characterizing individual treeâ€level snags using airborne lidarâ€derived forest canopy gaps within closedâ€canopy conifer forests. Methods in Ecology and Evolution, 2022, 13, 473-484.	5.2	4
2	Large scale multi-layer fuel load characterization in tropical savanna using GEDI spaceborne lidar data. Remote Sensing of Environment, 2022, 268, 112764.	11.0	27
3	Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sensing of Environment, 2022, 270, 112845.	11.0	108
4	Evaluating the Use of Lidar to Discern Snag Characteristics Important for Wildlife. Remote Sensing, 2022, 14, 720.	4.0	5
5	<scp>treetop</scp> : A Shinyâ€based application and R package for extracting forest information from <scp>LiDAR</scp> data for ecologists and conservationists. Methods in Ecology and Evolution, 2022, 13, 1164-1176.	5.2	15
6	Specifying geospatial data product characteristics for forest and fuel management applications. Environmental Research Letters, 2022, 17, 045025.	5.2	3
7	Identifying conifer mortality induced by Armillaria root disease using airborne lidar and orthoimagery in south central Oregon. Forest Ecology and Management, 2022, 511, 120126.	3.2	3
8	Comparison of fire-produced gases from wind tunnel and small field experimental burns. International Journal of Wildland Fire, 2022, , .	2.4	3
9	Influence of UAS Flight Altitude and Speed on Aboveground Biomass Prediction. Remote Sensing, 2022, 14, 1989.	4.0	9
10	A Comparison of Multitemporal Airborne Laser Scanning Data and the Fuel Characteristics Classification System for Estimating Fuel Load and Consumption. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	3
11	Carbon monitoring and above ground biomass trends: Anchor forest opportunities for tribal, private and federal relationships. Trees, Forests and People, 2022, 9, 100302.	1.9	0
12	Emissions of Reactive Nitrogen From Western U.S. Wildfires During Summer 2018. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD032657.	3.3	41
13	Regional Modeling of Forest Fuels and Structural Attributes Using Airborne Laser Scanning Data in Oregon. Remote Sensing, 2021, 13, 261.	4.0	9
14	Performance of the ecosystem demography model (EDv2.2) in simulating gross primary production capacity and activity in a dryland study area. Agricultural and Forest Meteorology, 2021, 297, 108270.	4.8	2
15	Understanding the effect of fire on vegetation composition and gross primary production in a semi-arid shrubland ecosystem using the Ecosystem Demography (EDv2.2) model. Biogeosciences, 2021, 18, 2027-2045.	3.3	0
16	Tree mortality in western U.S. forests forecasted using forest inventory and Random Forest classification. Ecosphere, 2021, 12, e03419.	2.2	19
17	Beyond trees: Mapping total aboveground biomass density in the Brazilian savanna using high-density UAV-lidar data. Forest Ecology and Management, 2021, 491, 119155.	3.2	24
18	Influence of flight parameters on UAS-based monitoring of tree height, diameter, and density. Remote Sensing of Environment, 2021, 263, 112540.	11.0	31

#	Article	IF	CITATIONS
19	Environmental Influences on Density and Height Growth of Natural Ponderosa Pine Regeneration following Wildfires. Fire, 2021, 4, 80.	2.8	5
20	Evaluating the Persistence of Post-Wildfire Ash: A Multi-Platform Spatiotemporal Analysis. Fire, 2021, 4, 68.	2.8	6
21	Using Fay–Herriot Models and Variable Radius Plot Data to Develop a Stand-Level Inventory and Update a Prior Inventory in the Western Cascades, OR, United States. Frontiers in Forests and Global Change, 2021, 4, .	2.3	3
22	Quantifying fire trends in boreal forests with Landsat time series and self-organized criticality. Remote Sensing of Environment, 2020, 237, 111525.	11.0	24
23	Estimating wildfire fuel consumption with multitemporal airborne laser scanning data and demonstrating linkage with MODIS-derived fire radiative energy. Remote Sensing of Environment, 2020, 251, 112114.	11.0	24
24	Estimating Time Since the Last Stand-Replacing Disturbance (TSD) from Spaceborne Simulated GEDI Data: A Feasibility Study. Remote Sensing, 2020, 12, 3506.	4.0	7
25	Individual Tree Attribute Estimation and Uniformity Assessment in Fast-Growing Eucalyptus spp. Forest Plantations Using Lidar and Linear Mixed-Effects Models. Remote Sensing, 2020, 12, 3599.	4.0	21
26	Comparison of Statistical Modelling Approaches for Estimating Tropical Forest Aboveground Biomass Stock and Reporting Their Changes in Low-Intensity Logging Areas Using Multi-Temporal LiDAR Data. Remote Sensing, 2020, 12, 1498.	4.0	24
27	Fuel Dynamics Following Wildfire in US Northern Rockies Forests. Frontiers in Forests and Global Change, 2020, 3, .	2.3	12
28	Using Satellite Imagery to Evaluate Bark Beetle-Caused Tree Mortality Reported in Aerial Surveys in a Mixed Conifer Forest in Northern Idaho, USA. Forests, 2020, 11, 529.	2.1	13
29	Coupling terrestrial laser scanning with 3D fuel biomass sampling for advancing wildland fuels characterization. Forest Ecology and Management, 2020, 462, 117945.	3.2	38
30	Monitoring pinyon-juniper cover and aboveground biomass across the Great Basin. Environmental Research Letters, 2020, 15, 025004.	5.2	32
31	Towards Spatially Explicit Quantification of Pre- and Postfire Fuels and Fuel Consumption from Traditional and Point Cloud Measurements. Forest Science, 2020, 66, 428-442.	1.0	29
32	Hundred year projected carbon loads and species compositions for four National Forests in the northwestern USA. Carbon Balance and Management, 2020, 15, 5.	3.2	3
33	A carbon monitoring system for mapping regional, annual aboveground biomass across the northwestern USA. Environmental Research Letters, 2020, 15, 095003.	5.2	32
34	Mapping Multiple Insect Outbreaks across Large Regions Annually Using Landsat Time Series Data. Remote Sensing, 2020, 12, 1655.	4.0	23
35	Armillaria altimontana Is Associated with Healthy Western White Pine (Pinus monticola): Potential in Situ Biological Control of the Armillaria Root Disease Pathogen, A. solidipes. Forests, 2019, 10, 294.	2.1	13
36	Does burn severity affect plant community diversity and composition in mixed conifer forests of the United States Intermountain West one decade post fire?. Fire Ecology, 2019, 15, .	3.0	24

#	Article	IF	CITATIONS
37	Simulating Groundcover Community Assembly in a Frequently Burned Ecosystem Using a Simple Neutral Model. Frontiers in Plant Science, 2019, 10, 1107.	3.6	7
38	Predicting forest understory habitat for Canada lynx using LIDAR data. Wildlife Society Bulletin, 2019, 43, 619-629.	1.6	3
39	Got shrubs? Precipitation mediates long-term shrub and introduced grass dynamics in chaparral communities after fire. Fire Ecology, 2019, 15, .	3.0	4
40	Characterizing fire effects on conifers at tree level from airborne laser scanning and high-resolution, multispectral satellite data. Ecological Modelling, 2019, 412, 108820.	2.5	15
41	The Survival of Pinus ponderosa Saplings Subjected to Increasing Levels of Fire Behavior and Impacts on Post-Fire Growth. Fire, 2019, 2, 23.	2.8	14
42	An Assessment of Fire Refugia Importance Criteria Ranked by Land Managers. Fire, 2019, 2, 27.	2.8	5
43	Relationships between Satellite-Based Spectral Burned Ratios and Terrestrial Laser Scanning. Forests, 2019, 10, 444.	2.1	9
44	Estimation of Changes of Forest Structural Attributes at Three Different Spatial Aggregation Levels in Northern California using Multitemporal LiDAR. Remote Sensing, 2019, 11, 923.	4.0	12
45	The Fire and Smoke Model Evaluation Experiment—A Plan for Integrated, Large Fire–Atmosphere Field Campaigns. Atmosphere, 2019, 10, 66.	2.3	53
46	Fire behaviour and smoke modelling: model improvement and measurement needs for next-generation smoke research and forecasting systems. International Journal of Wildland Fire, 2019, 28, 570.	2.4	40
47	Maximizing the monitoring of diversity for management activities: Additive partitioning of plant species diversity across a frequently burned ecosystem. Forest Ecology and Management, 2019, 432, 409-414.	3.2	11
48	Inferring energy incident on sensors in low-intensity surface fires from remotely sensed radiation and using it to predict tree stem injury. International Journal of Wildland Fire, 2019, 28, 230.	2.4	3
49	Short- and long-term effects of ponderosa pine fuel treatments intersected by the Egley Fire Complex, Oregon, USA. Fire Ecology, 2019, 15, .	3.0	4
50	Boreal forest vegetation and fuel conditions 12 years after the 2004 Taylor Complex fires in Alaska, USA. Fire Ecology, 2019, 15, .	3.0	6
51	Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014. Ecosphere, 2018, 9, e02029.	2.2	36
52	Comparison of Small- and Large-Footprint Lidar Characterization of Tropical Forest Aboveground Structure and Biomass: A Case Study From Central Gabon. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 3512-3526.	4.9	60
53	Improving Individual Tree Crown Delineation and Attributes Estimation of Tropical Forests Using Airborne LiDAR Data. Forests, 2018, 9, 759.	2.1	47
54	Semi-Automated Delineation of Stands in an Even-Age Dominated Forest: A LiDAR-GEOBIA Two-Stage Evaluation Strategy. Remote Sensing, 2018, 10, 1622.	4.0	8

#	Article	IF	CITATIONS
55	Supervised spatial classification of multispectral LiDAR data in urban areas. PLoS ONE, 2018, 13, e0206185.	2.5	32
56	Transferability of Lidar-derived Basal Area and Stem Density Models within a Northern Idaho Ecoregion. Canadian Journal of Remote Sensing, 2018, 44, 131-143.	2.4	36
57	Applications of the United States Forest Inventory and Analysis dataset: a review and future directions. Canadian Journal of Forest Research, 2018, 48, 1251-1268.	1.7	92
58	The Cooney Ridge Fire Experiment: An Early Operation to Relate Pre-, Active, and Post-Fire Field and Remotely Sensed Measurements. Fire, 2018, 1, 10.	2.8	8
59	Forest productivity varies with soil moisture more than temperature in a small montane watershed. Agricultural and Forest Meteorology, 2018, 259, 211-221.	4.8	15
60	Quantifying understory vegetation density using small-footprint airborne lidar. Remote Sensing of Environment, 2018, 215, 330-342.	11.0	80
61	Preface: Special Issue on Wildland Fires. Land, 2018, 7, 46.	2.9	0
62	Estimating Stand Height and Tree Density in Pinus taeda plantations using in-situ data, airborne LiDAR and k-Nearest Neighbor Imputation. Anais Da Academia Brasileira De Ciencias, 2018, 90, 295-309.	0.8	11
63	Taxonomic, functional, and phylogenetic diversity of bird assemblages are oppositely associated to productivity and heterogeneity in temperate forests. Remote Sensing of Environment, 2018, 215, 145-156.	11.0	25
64	Landscape-scale quantification of fire-induced change in canopy cover following mountain pine beetle outbreak and timber harvest. Forest Ecology and Management, 2017, 391, 164-175.	3.2	27
65	Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure. Remote Sensing of Environment, 2017, 191, 419-432.	11.0	82
66	Relationships among Vegetation Structure, Canopy Composition, and Avian Richness Patterns across an Aspen-Conifer Forest Gradient. Canadian Journal of Remote Sensing, 2017, 43, 231-243.	2.4	6
67	Overstoryâ€derived surface fuels mediate plant species diversity in frequently burned longleaf pine forests. Ecosphere, 2017, 8, e01964.	2.2	39
68	Indicators of burn severity at extended temporal scales: a decade of ecosystem response in mixed-conifer forests of western Montana. International Journal of Wildland Fire, 2017, 26, 755.	2.4	22
69	Combined effect of pulse density and grid cell size on predicting and mapping aboveground carbon in fast-growing Eucalyptus forest plantation using airborne LiDAR data. Carbon Balance and Management, 2017, 12, 13.	3.2	18
70	Modeling and mapping basal area of Pinus taeda L. plantation using airborne LiDAR data. Anais Da Academia Brasileira De Ciencias, 2017, 89, 1895-1905.	0.8	9
71	Prediction of Forest Canopy and Surface Fuels from Lidar and Satellite Time Series Data in a Bark Beetle-Affected Forest. Forests, 2017, 8, 322.	2.1	29
72	Individual Tree Detection from Unmanned Aerial Vehicle (UAV) Derived Canopy Height Model in an Open Canopy Mixed Conifer Forest. Forests, 2017, 8, 340.	2.1	267

#	Article	IF	CITATIONS
73	Predicting Stem Total and Assortment Volumes in an Industrial Pinus taeda L. Forest Plantation Using Airborne Laser Scanning Data and Random Forest. Forests, 2017, 8, 254.	2.1	41
74	Impacts of Airborne Lidar Pulse Density on Estimating Biomass Stocks and Changes in a Selectively Logged Tropical Forest. Remote Sensing, 2017, 9, 1068.	4.0	45
75	Short-Term Effects of Reduced-Impact Logging on Copaifera spp. (Fabaceae) Regeneration in Eastern Amazon. Forests, 2017, 8, 257.	2.1	3
76	Multidecadal trends in area burned with high severity in the Selway-Bitterroot Wilderness Area 1880–2012. International Journal of Wildland Fire, 2017, 26, 930.	2.4	21
77	Fire weather conditions and fire–atmosphere interactions observed during low-intensity prescribed fires – RxCADRE 2012. International Journal of Wildland Fire, 2016, 25, 90.	2.4	46
78	Disaggregating Tropical Disease Prevalence by Climatic and Vegetative Zones within Tropical West Africa. PLoS ONE, 2016, 11, e0152560.	2.5	11
79	Simulated water budget of a small forested watershed in the continental/maritime hydroclimatic region of the United States. Hydrological Processes, 2016, 30, 2000-2013.	2.6	5
80	High-resolution infrared thermography for capturing wildland fire behaviour: RxCADRE 2012. International Journal of Wildland Fire, 2016, 25, 62.	2.4	69
81	Introducing Close-Range Photogrammetry for Characterizing Forest Understory Plant Diversity and Surface Fuel Structure at Fine Scales. Canadian Journal of Remote Sensing, 2016, 42, 460-472.	2.4	19
82	Laboratory experiments to estimate interception of infrared radiation by tree canopies. International Journal of Wildland Fire, 2016, 25, 1009.	2.4	18
83	The Science of Firescapes: Achieving Fire-Resilient Communities. BioScience, 2016, 66, 130-146.	4.9	157
84	Mapping Forest Structure and Composition from Low-Density LiDAR for Informed Forest, Fuel, and Fire Management at Eglin Air Force Base, Florida, USA. Canadian Journal of Remote Sensing, 2016, 42, 411-427.	2.4	42
85	Development of Height-Volume Relationships in Second Growth <i>Abies grandis</i> for Use with Aerial LiDAR. Canadian Journal of Remote Sensing, 2016, 42, 400-410.	2.4	17
86	Optimizing Variable Radius Plot Size and LiDAR Resolution to Model Standing Volume in Conifer Forests. Canadian Journal of Remote Sensing, 2016, 42, 428-442.	2.4	19
87	Sampling methods for titica vine (Heteropsis spp.) inventory in a tropical forest. Annals of Forest Science, 2016, 73, 757-764.	2.0	2
88	Introduction to Special Issue on Remote Sensing for Advanced Forest Inventory. Canadian Journal of Remote Sensing, 2016, 42, 397-399.	2.4	0
89	Canopy-Derived Fuels Drive Patterns of In-Fire Energy Release and Understory Plant Mortality in a Longleaf Pine (<i>Pinus palustris</i>) Sandhill in Northwest Florida, USA. Canadian Journal of Remote Sensing, 2016, 42, 489-500.	2.4	41
90	Imputation of Individual Longleaf Pine (<i>Pinus palustris</i> Mill.) Tree Attributes from Field and LiDAR Data. Canadian Journal of Remote Sensing, 2016, 42, 554-573.	2.4	172

#	Article	IF	CITATIONS
91	A principal component approach for predicting the stem volume in Eucalyptus plantations in Brazil using airborne LiDAR data. Forestry, 2016, 89, 422-433.	2.3	35
92	Measurements relating fire radiative energy density and surface fuel consumption – RxCADRE 2011 and 2012. International Journal of Wildland Fire, 2016, 25, 25.	2.4	64
93	Measurements, datasets and preliminary results from the RxCADRE project – 2008, 2011 and 2012. International Journal of Wildland Fire, 2016, 25, 1.	2.4	55
94	Measuring radiant emissions from entire prescribed fires with ground, airborne and satellite sensors – RxCADRE 2012. International Journal of Wildland Fire, 2016, 25, 48.	2.4	40
95	Pre-fire and post-fire surface fuel and cover measurements collected in the south-eastern United States for model evaluation and development – RxCADRE 2008, 2011 and 2012. International Journal of Wildland Fire, 2016, 25, 10.	2.4	32
96	A Case Study Comparison of LANDFIRE Fuel Loading and Emissions Generation on a Mixed Conifer Forest in Northern Idaho, USA. Fire Ecology, 2015, 11, 108-127.	3.0	5
97	Vegetation Response to Burn Severity, Native Grass Seeding, and Salvage Logging. Fire Ecology, 2015, 11, 31-58.	3.0	42
98	Occupancy of redâ€naped sapsuckers in a coniferous forest: using Li <scp>DAR</scp> to understand effects of vegetation structure and disturbance. Ecology and Evolution, 2015, 5, 5383-5393.	1.9	7
99	Temporal transferability of LiDAR-based imputation of forest inventory attributes. Canadian Journal of Forest Research, 2015, 45, 422-435.	1.7	49
100	Vegetation, topography and daily weather influenced burn severity in central Idaho and western Montana forests. Ecosphere, 2015, 6, 1-23.	2.2	101
101	Vegetation Response after Post-Fire Mulching and Native Grass Seeding. Fire Ecology, 2014, 10, 49-62.	3.0	22
102	Challenges of assessing fire and burn severity using field measures, remote sensing and modelling. International Journal of Wildland Fire, 2014, 23, 1045.	2.4	174
103	Using climate-FVS to project landscape-level forest carbon stores for 100 years from field and LiDAR measures of initial conditions. Carbon Balance and Management, 2014, 9, 1.	3.2	15
104	Terrain and vegetation structural influences on local avian species richness in two mixed-conifer forests. Remote Sensing of Environment, 2014, 147, 13-22.	11.0	51
105	How much does the time lag between wildlife field-data collection and LiDAR-data acquisition matter for studies of animal distributions? A case study using bird communities. Remote Sensing Letters, 2014, 5, 185-193.	1.4	23
106	Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems. Remote Sensing of Environment, 2014, 154, 322-337.	11.0	107
107	Imputing Forest Structure Attributes from Stand Inventory and Remotely Sensed Data in Western Oregon, USA. Forest Science, 2014, 60, 253-269.	1.0	20
108	Quantifying <scp>T</scp> ropical <scp>D</scp> ry <scp>F</scp> orest <scp>T</scp> ype and <scp>S</scp> uccession: <scp>S</scp> ubstantial <scp>I</scp> mprovement with <scp>LiDAR</scp> . Biotropica, 2013, 45, 135-146.	1.6	26

#	Article	IF	CITATIONS
109	Lidar-Derived Canopy Architecture Predicts Brown Creeper Occupancy of Two Western Coniferous Forests. Condor, 2013, 115, 614-622.	1.6	25
110	Predicting live and dead basal area from LandTrendr variables in beetle-affected forests. , 2013, , .		4
111	Evaluating methods to detect bark beetle-caused tree mortality using single-date and multi-date Landsat imagery. Remote Sensing of Environment, 2013, 132, 49-58.	11.0	156
112	Predicting live and dead tree basal area of bark beetle affected forests from discrete-return lidar. Canadian Journal of Remote Sensing, 2013, 39, S99-S111.	2.4	35
113	Fuel moisture influences on fireâ€eltered carbon in masticated fuels: An experimental study. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 30-40.	3.0	34
114	The relationship of post-fire white ash cover to surface fuel consumption. International Journal of Wildland Fire, 2013, 22, 780.	2.4	23
115	Using Satellite and Airborne LiDAR to Model Woodpecker Habitat Occupancy at the Landscape Scale. PLoS ONE, 2013, 8, e80988.	2.5	34
116	Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys. Remote Sensing of Environment, 2012, 123, 25-40.	11.0	225
117	Estimating aboveground carbon stocks of a forest affected by mountain pine beetle in Idaho using lidar and multispectral imagery. Remote Sensing of Environment, 2012, 124, 270-281.	11.0	60
118	Investigating the influence of LiDAR ground surface errors on the utility of derived forest inventories. Canadian Journal of Forest Research, 2012, 42, 413-422.	1.7	43
119	Utility of Remotely Sensed Imagery for Assessing the Impact of Salvage Logging after Forest Fires. Remote Sensing, 2012, 4, 2112-2132.	4.0	8
120	Evaluation of the MODIS LAI product using independent lidar-derived LAI: A case study in mixed conifer forest. Remote Sensing of Environment, 2011, 115, 3625-3639.	11.0	56
121	Using hyperspectral imagery to estimate forest floor consumption from wildfire in boreal forests of Alaska, USA. International Journal of Wildland Fire, 2011, 20, 255.	2.4	42
122	A Comparison of Two Open Source LiDAR Surface Classification Algorithms. Remote Sensing, 2011, 3, 638-649.	4.0	48
123	Burn Severity of Areas Reburned by Wildfires in the Gila National Forest, New Mexico, USA. Fire Ecology, 2010, 6, 77-85.	3.0	61
124	Landscape-scale parameterization of a tree-level forest growth model: a <i>k-</i> nearest neighbor imputation approach incorporating LiDAR data. Canadian Journal of Forest Research, 2010, 40, 184-199.	1.7	95
125	Spectral analysis of charcoal on soils: implicationsfor wildland fire severity mapping methods. International Journal of Wildland Fire, 2010, 19, 976.	2.4	45
126	A cross-comparison of field, spectral, and lidar estimates of forest canopy cover. Canadian Journal of Remote Sensing, 2009, 35, 447-459.	2.4	89

ANDREW T. HUDAK

#	Article	IF	CITATIONS
127	Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, USA. Remote Sensing of Environment, 2009, 113, 946-956.	11.0	274
128	Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability. Remote Sensing of Environment, 2009, 113, 2533-2546.	11.0	234
129	The roles of nearest neighbor methods in imputing missing data in forest inventory and monitoring databases. Scandinavian Journal of Forest Research, 2009, 24, 235-246.	1.4	132
130	Remote sensing for prediction of 1-year post-fire ecosystem condition. International Journal of Wildland Fire, 2009, 18, 594.	2.4	78
131	LiDAR Utility for Natural Resource Managers. Remote Sensing, 2009, 1, 934-951.	4.0	136
132	Discrete Return Lidar in Natural Resources: Recommendations for Project Planning, Data Processing, and Deliverables. Remote Sensing, 2009, 1, 776-794.	4.0	128
133	Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sensing of Environment, 2008, 112, 2232-2245.	11.0	336
134	The influence of conifer forest canopy cover on the accuracy of two individual tree measurement algorithms using lidar data. Canadian Journal of Remote Sensing, 2008, 34, S338-S350.	2.4	123
135	Characterizing Forest Fragments in Boreal, Temperate, and Tropical Ecosystems. Ambio, 2008, 37, 569-576.	5.5	15
136	Post-Fire Burn Severity and Vegetation Response Following Eight Large Wildfires Across the Western United States. Fire Ecology, 2007, 3, 91-108.	3.0	118
137	The Relationship of Multispectral Satellite Imagery to Immediate Fire Effects. Fire Ecology, 2007, 3, 64-90.	3.0	163
138	Mapping Ground Cover Using Hyperspectral Remote Sensing after the 2003 Simi and Old Wildfires in Southern California. Fire Ecology, 2007, 3, 109-128.	3.0	35
139	Postfire soil burn severity mapping with hyperspectral image unmixing. Remote Sensing of Environment, 2007, 108, 467-480.	11.0	134
140	A Multiscale Curvature Algorithm for Classifying Discrete Return LiDAR in Forested Environments. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45, 1029-1038.	6.3	281
141	Remote sensing techniques to assess active fire characteristics and post-fire effects. International Journal of Wildland Fire, 2006, 15, 319.	2.4	706
142	Regression modeling and mapping of coniferous forest basal area and tree density from discrete-return lidar and multispectral satellite data. Canadian Journal of Remote Sensing, 2006, 32, 126-138.	2.4	161
143	Automated estimation of individual conifer tree height and crown diameter via two-dimensional spatial wavelet analysis of lidar data. Canadian Journal of Remote Sensing, 2006, 32, 153-161.	2.4	210
144	Estimating combustion of large downed woody debris from residual white ash. International Journal of Wildland Fire, 2005, 14, 245.	2.4	45

ANDREW T. HUDAK

#	Article	IF	CITATIONS
145	Patterns of covariance between forest stand and canopy structure in the Pacific Northwest. Remote Sensing of Environment, 2005, 95, 517-531.	11.0	81
146	Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest. Remote Sensing of Environment, 2005, 95, 532-548.	11.0	118
147	Comparison of regression and geostatistical methods for mapping Leaf Area Index (LAI) with Landsat ETM+ data over a boreal forest. Remote Sensing of Environment, 2005, 96, 49-61.	11.0	86
148	Testing the potential of multi-spectral remote sensing for retrospectively estimating fire severity in African Savannahs. Remote Sensing of Environment, 2005, 97, 92-115.	11.0	157
149	Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling. Forest Ecology and Management, 2005, 217, 129-146.	3.2	129
150	Trends in fire patterns in a southern African savanna under alternative land use practices. Agriculture, Ecosystems and Environment, 2004, 101, 307-325.	5.3	47
151	Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height. Remote Sensing of Environment, 2002, 82, 397-416.	11.0	278
152	Linking the Conservation of Culture and Nature: A Case Study of Sacred Forests in Zimbabwe. Human Ecology, 2001, 29, 187-218.	1.4	125
153	Deforestation in Mwanza District, Malawi, from 1981 to 1992, as determined from Landsat MSS imagery. Applied Geography, 2000, 20, 155-175.	3.7	29
154	Textural Analysis of Historical Aerial Photography to Characterize Woody Plant Encroachment in South African Savanna. Remote Sensing of Environment, 1998, 66, 317-330.	11.0	153
155	Reconstruction of the disturbance history of a temperate coniferous forest through stand-level analysis of airborne LiDAR data. Forestry, 0, , .	2.3	2
156	Biophysical Settings that Influenced Plantation Survival During the 2015 Wildfires in Northern Rocky Mountain Moist Mixed-Conifer Forests. Journal of Forestry, 0, , .	1.0	2