
Georges Istamboulie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11870241/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a new dual electrochemical immunosensor for a rapid and sensitive detection of enrofloxacin in meat samples. Food Chemistry, 2022, 370, 131016.	8.2	24
2	Reusable molecularly imprinted polymeric nanospheres for diclofenac removal from water samples. Journal of Chemical Research, 2021, 45, 102-110.	1.3	11
3	SECM for Studying the Immobilization and Repartition of a Redox Antiâ€ŧetracycline Aptamer on Screenâ€printed Carbon Electrodes. Electroanalysis, 2021, 33, 292-295.	2.9	2
4	A signal-on electrochemical aptasensor based on silanized cellulose nanofibers for rapid point-of-use detection of ochratoxin A. Mikrochimica Acta, 2020, 187, 535.	5.0	27
5	A reagentless aptasensor based on intrinsic aptamer redox activity for the detection of tetracycline in water. Sensors and Actuators B: Chemical, 2019, 288, 141-146.	7.8	41
6	Ultrasensitive label-free electrochemical immunosensor based on PVA-co-PE nanofibrous membrane for the detection of chloramphenicol residues in milk. Biosensors and Bioelectronics, 2018, 117, 838-844.	10.1	76
7	Disposable and portable aptamer functionalized impedimetric sensor for detection of kanamycin residue in milk sample. Sensors and Actuators B: Chemical, 2017, 245, 507-515.	7.8	99
8	Biosensor-assisted selection of optimal parameters for designing molecularly imprinted polymers selective to phosmet insecticide. Talanta, 2017, 174, 414-419.	5.5	13
9	Selection of DNA aptamers against penicillin G using Capture-SELEX for the development of an impedimetric sensor. Talanta, 2017, 162, 232-240.	5.5	88
10	Development of structure switching aptamer assay for detection of aflatoxin M1 in milk sample. Talanta, 2016, 158, 35-41.	5.5	63
11	Development of an impedimetric aptasensor for the determination of aflatoxin M1 in milk. Talanta, 2016, 146, 464-469.	5.5	122
12	Determination of Mycotoxins in Food: A Review of Bioanalytical to Analytical Methods. Applied Spectroscopy Reviews, 2015, 50, 728-774.	6.7	65
13	Biosensor-based real-time monitoring of paracetamol photocatalytic degradation. Chemosphere, 2015, 131, 124-129.	8.2	14
14	Automated flow based biosensor for quantification of binary organophosphates mixture in milk using artificial neural network. Sensors and Actuators B: Chemical, 2015, 208, 228-237.	7.8	42
15	Detection of glycoalkaloids using disposable biosensors based on genetically modified enzymes. Analytical Biochemistry, 2014, 457, 85-90.	2.4	15
16	Molecularly imprinted polymer cartridges coupled to high performance liquid chromatography (HPLC-UV) for simple and rapid analysis of fenthion in olive oil. Talanta, 2014, 125, 313-318.	5.5	45
17	A Simple Colorimetric Enzymatic-Assay, based on immobilization of acetylcholinesterase by adsorption, for sensitive detection of organophosphorus insecticides in olive oil. Food Control, 2014, 46, 75-80.	5.5	22
18	Computational and experimental investigation of molecular imprinted polymers for selective extraction of dimethoate and its metabolite omethoate from olive oil. Journal of Chromatography A, 2013, 1274, 13-18.	3.7	52

GEORGES ISTAMBOULIE

#	ARTICLE	IF	CITATIONS
19	Sol–gel immobilization of acetylcholinesterase for the determination of organophosphate pesticides in olive oil with biosensors. Food Control, 2013, 30, 657-661.	5.5	42
20	Acetylcholinesterase Immobilized on Magnetic Beads for Pesticides Detection: Application to Olive Oil Analysis. Sensors, 2012, 12, 7893-7904.	3.8	29
21	Detection and Detoxification of Organophosphate Warfare Agents. NATO Science for Peace and Security Series A: Chemistry and Biology, 2012, , 245-259.	0.5	0
22	Molecular imprinting solid phase extraction for selective detection of methidathion in olive oil. Analytica Chimica Acta, 2012, 734, 99-105.	5.4	44
23	Biosensor employing screenâ€printed PEDOT:PSS for sensitive detection of phenolic compounds in water. Journal of Polymer Science Part A, 2012, 50, 2286-2292.	2.3	38
24	Rapid determination of pesticide mixtures using disposable biosensors based on genetically modified enzymes and artificial neural networks. Sensors and Actuators B: Chemical, 2012, 164, 22-28.	7.8	47
25	Chronoamperometric determination of lead ions using PEDOT:PSS modified carbon electrodes. Talanta, 2011, 85, 2528-2533.	5.5	31
26	Highly Sensitive Detection of Organophosphate Insecticides Using Biosensors Based on Genetically Engineered Acetylcholinesterase and Poly(3,4-Ethylenedioxythiophene). Journal of Sensors, 2011, 2011, 1-7.	1.1	8
27	Screen-printed poly(3,4-ethylenedioxythiophene) (PEDOT): A new electrochemical mediator for acetylcholinesterase-based biosensors. Talanta, 2010, 82, 957-961.	5.5	90
28	Artificial neural network implementation in single low-cost chip for the detection of insecticides by modeling of screen-printed enzymatic sensors response. Computers and Electronics in Agriculture, 2010, 74, 223-229.	7.7	26
29	Selective spectrophotometric detection of insecticides using cholinesterases, phosphotriesterase and chemometric analysis. Enzyme and Microbial Technology, 2010, 46, 212-216.	3.2	21
30	Biosensor-controlled degradation of chlorpyrifos and chlorfenvinfos using a phosphotriesterase-based detoxification column. Chemosphere, 2010, 78, 1-6.	8.2	22
31	Phosphotriesterase: A complementary tool for the selective detection of two organophosphate insecticides: Chlorpyrifos and chlorfenvinfos. Talanta, 2009, 77, 1627-1631.	5.5	37
32	The use of Artificial Neural Networks for the selective detection of two organophosphate insecticides: Chlorpyrifos and chlorfenvinfos. Talanta, 2009, 79, 507-511.	5.5	36
33	Highly sensitive detection of organophosphorus insecticides using magnetic microbeads and genetically engineered acetylcholinesterase. Biosensors and Bioelectronics, 2007, 23, 506-512.	10.1	92

34 Analysis of Pesticide Mixtures Using Intelligent Biosensors. , 0, , .