Juyou Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1186919/publications.pdf

Version: 2024-02-01

		361413	214800
56	2,368	20	47
papers	citations	h-index	g-index
56	56	56	2395
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	PbrROP1/2-elicited imbalance of cellulose deposition is mediated by a CrRLK1L-ROPGEF module in the pollen tube of <i>Pyrus</i> . Horticulture Research, 2022, 9, .	6.3	8
2	Cellulose accumulation mediated by <scp>PbrCSLD5</scp> , a cellulose synthaseâ€like protein, results in cessation of pollen tube growth in <i>Pyrus bretschneideri</i> . Physiologia Plantarum, 2022, 174, e13700.	5 . 2	2
3	The Origin and Evolution of RNase T2 Family and Gametophytic Self-incompatibility System in Plants. Genome Biology and Evolution, 2022, 14, .	2.5	5
4	PbrCalS5, a callose synthase protein, is involved in pollen tube growth in Pyrus bretschneideri. Planta, 2022, 256, .	3.2	4
5	Characterization of the pectin methylesterase inhibitor gene family in Rosaceae and role of PbrPMEI23/39/41 in methylesterified pectin distribution in pear pollen tube. Planta, 2021, 253, 118.	3.2	13
6	Study on the differences of gene expression between pear and apple wild cultivation materials based on RNA-seq technique. BMC Plant Biology, 2021, 21, 256.	3.6	3
7	Identification and function analysis of fasciclin-like arabinogalactan protein family genes in pear (Pyrus bretschneideri). Plant Systematics and Evolution, 2021, 307, 1.	0.9	3
8	Natural allelic variation in a modulator of auxin homeostasis improves grain yield and nitrogen use efficiency in rice. Plant Cell, 2021, 33, 566-580.	6.6	53
9	PbrRALF2-elicited reactive oxygen species signaling is mediated by the PbrCrRLK1L13-PbrMPK18 module in pear pollen tubes. Horticulture Research, 2021, 8, 222.	6.3	12
10	Physiological and Morphological Responses of Hydroponically Grown Pear Rootstock Under Phosphorus Treatment. Frontiers in Plant Science, 2021, 12, 696045.	3.6	3
11	Characterization of Dof family in Pyrus bretschneideri and role of PbDof9.2 in flowering time regulation. Genomics, 2020, 112, 712-720.	2.9	18
12	Identification and functional characterization of SOC1-like genes in Pyrus bretschneideri. Genomics, 2020, 112, 1622-1632.	2.9	13
13	Phytophthora Effectors Modulate Genome-wide Alternative Splicing of Host mRNAs to Reprogram Plant Immunity. Molecular Plant, 2020, 13, 1470-1484.	8.3	49
14	Characterization of the pectin methyl-esterase gene family and its function in controlling pollen tube growth in pear (Pyrus bretschneideri). Genomics, 2020, 112, 2467-2477.	2.9	27
15	The Peptide PbrPSK2 From Phytosulfokine Family Induces Reactive Oxygen Species (ROS) Production to Regulate Pear Pollen Tube Growth. Frontiers in Plant Science, 2020, 11, 601993.	3.6	9
16	Genome-wide survey of sucrose non-fermenting 1-related protein kinase 2 in Rosaceae and expression analysis of PbrSnRK2 in response to ABA stress. BMC Genomics, 2020, 21, 781.	2.8	11
17	Comprehensive genomic analysis of the RNase T2 gene family in Rosaceae and expression analysis in Pyrus bretschneideri. Plant Systematics and Evolution, 2020, 306, 1.	0.9	7
18	PbrPOE21 inhibits pear pollen tube growth in vitro by altering apical reactive oxygen species content. Planta, 2020, 252, 43.	3.2	3

#	Article	IF	CITATIONS
19	Expression and evolutionary analysis of soluble inorganic pyrophosphatase gene family in pear and four other Rosaceae species. Plant Systematics and Evolution, 2020, 306, 1.	0.9	5
20	Genome-wide survey and expression analysis of the SLAC/SLAH gene family in pear (Pyrus) Tj ETQq0 0 0 rgBT /Ov	erlogk 10	Tf 50 702 Td
21	The \hat{I}^2 -amylase PbrBAM3 from pear (Pyrus betulaefolia) regulates soluble sugar accumulation and ROS homeostasis in response to cold stress. Plant Science, 2019, 287, 110184.	3.6	52
22	PbrPCCP1 mediates the PbrTTS1 signaling to control pollen tube growth in pear. Plant Science, 2019, 289, 110244.	3.6	2
23	Identification of Shaker K+ channel family members in Rosaceae and a functional exploration of PbrKAT1. Planta, 2019, 250, 1911-1925.	3.2	14
24	Single-pollen-cell sequencing for gamete-based phased diploid genome assembly in plants. Genome Research, 2019, 29, 1889-1899.	5.5	28
25	PbrSLAH3 is a nitrate-selective anion channel which is modulated by calcium-dependent protein kinase 32 in pear. BMC Plant Biology, 2019, 19, 190.	3.6	6
26	The unique evolutionary pattern of the Hydroxyproline-rich glycoproteins superfamily in Chinese white pear (Pyrus bretschneideri). BMC Plant Biology, 2018, 18, 36.	3.6	6
27	Phosphatidic Acid Counteracts S-RNase Signaling in Pollen by Stabilizing the Actin Cytoskeleton. Plant Cell, 2018, 30, 1023-1039.	6.6	101
28	Physiological and Nutritional Responses of Pear Seedlings to Nitrate Concentrations. Frontiers in Plant Science, 2018, 9, 1679.	3.6	33
29	Dynamic transcriptome analysis of root nitrate starvation and re-supply provides insights into nitrogen metabolism in pear (Pyrus bretschneideri). Plant Science, 2018, 277, 322-333.	3.6	15
30	Genome-wide identification and expression analysis of the <i>OSCA</i> gene family in <i>Pyrus bretschneideri</i> Canadian Journal of Plant Science, 2018, 98, 918-929.	0.9	12
31	Different Modes of Gene Duplication Show Divergent Evolutionary Patterns and Contribute Differently to the Expansion of Gene Families Involved in Important Fruit Traits in Pear (Pyrus) Tj ETQq1 1 0.7843	148rgBT/0	Ov er lock 10 I
32	Diversification and independent domestication of Asian and European pears. Genome Biology, 2018, 19, 77.	8.8	149
33	Identification and comparative analysis of the MCU gene family in pear and its functions during fruit ripening. Journal of Plant Physiology, 2018, 229, 53-62.	3.5	6
34	PbGLR3.3 Regulates Pollen Tube Growth in the Mediation of Ca2+ Influx in Pyrus bretschneideri. Journal of Plant Biology, 2018, 61, 217-226.	2.1	7
35	Network analysis reveals the co-expression of sugar and aroma genes in the Chinese white pear (Pyrus) Tj ${\sf ETQq1}$	1 0.7843 2.2	14 ₅ gBT /Ove
36	Evolution, expression analysis, and functional verification of Catharanthus roseus RLK1-like kinase (CrRLK1L) family proteins in pear (Pyrus bretchneideri). Genomics, 2017, 109, 290-301.	2.9	25

#	Article	IF	CITATIONS
37	PbCOL8 is a clock-regulated flowering time repressor in pear. Tree Genetics and Genomes, 2017, 13, 1.	1.6	7
38	Genome-wide characterization, evolution, and expression analysis of the leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene family in Rosaceae genomes. BMC Genomics, 2017, 18, 763.	2.8	62
39	Expansion and evolutionary patterns of cysteine-rich peptides in plants. BMC Genomics, 2017, 18, 610.	2.8	18
40	Evolutionary and Expression Analysis Provides Evidence for the Plant Glutamate-like Receptors Family is Involved in Woody Growth-related Function. Scientific Reports, 2016, 6, 32013.	3.3	16
41	Genome-wide identification and comparative analysis of the cation proton antiporters family in pear and four other Rosaceae species. Molecular Genetics and Genomics, 2016, 291, 1727-1742.	2.1	32
42	Phylogenetic and Expression Analysis of Pear Yellow Stripe-Like Transporters and Functional Verification of PbrYSL4 in Pear Pollen. Plant Molecular Biology Reporter, 2016, 34, 737-747.	1.8	3
43	Gene-expression profile of developing pollen tube of Pyrus bretschneideri. Gene Expression Patterns, 2016, 20, 11-21.	0.8	40
44	Genome-wide Annotation and Comparative Analysis of Long Terminal Repeat Retrotransposons between Pear Species of P. bretschneideri and P. Communis. Scientific Reports, 2015, 5, 17644.	3.3	16
45	Mitochondrial dysfunction mediated by cytoplasmic acidification results in pollen tube growth cessation in <i>Pyrus pyrifolia</i> Physiologia Plantarum, 2015, 153, 603-615.	5.2	18
46	Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear (Pyrus bretschneideri) and five other Rosaceae species. BMC Plant Biology, 2015, 15, 12.	3.6	138
47	Identification and testing of reference genes for gene expression analysis in pollen of Pyrus bretschneideri. Scientia Horticulturae, 2015, 190, 43-56.	3.6	34
48	Genomic characterization, phylogenetic comparison and differential expression of the cyclic nucleotide-gated channels gene family in pear (Pyrus bretchneideri Rehd.). Genomics, 2015, 105, 39-52.	2.9	52
49	Evolution of the Aroma Volatiles of Pear Fruits Supplemented with Fatty Acid Metabolic Precursors. Molecules, 2014, 19, 20183-20196.	3.8	41
50	Longâ€chain base phosphates modulate pollen tube growth via channelâ€mediated influx of calcium. Plant Journal, 2014, 79, 507-516.	5.7	17
51	The genome of the pear (<i>Pyrus bretschneideri</i> Rehd.). Genome Research, 2013, 23, 396-408.	5.5	832
52	Molecular Determinants and Mechanisms of Gametophytic Self-Incompatibility in Fruit Trees of Rosaceae. Critical Reviews in Plant Sciences, 2013, 32, 53-68.	5.7	39
53	The activity of plasma membrane hyperpolarization-activated Ca2+ channels during pollen development of Pyrus pyrifolia. Acta Physiologiae Plantarum, 2012, 34, 969-975.	2.1	3
54	cAMP activates hyperpolarization-activated Ca2+ channels in the pollen of Pyrus pyrifolia. Plant Cell Reports, 2011, 30, 1193-1200.	5.6	23

#	Article	IF	CITATIONS
55	Spermidine oxidase-derived H2O2 regulates pollen plasma membrane hyperpolarization-activated Ca2+-permeable channels and pollen tube growth. Plant Journal, 2010, 63, 1042-1053.	5.7	182
56	Characterization and Functional Explorations of O-glycosylation Enzymes SECRET AGENT and SPINDLY in Pyrus bretschneideri. Journal of Plant Biology, 0, , 1.	2.1	0