Bruce E Logan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1186762/publications.pdf Version: 2024-02-01

RRUCE ELOCAN

#	Article	IF	CITATIONS
1	Microbial Fuel Cells: Methodology and Technologyâ€. Environmental Science & Technology, 2006, 40, 5181-5192.	10.0	4,962
2	Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology, 2009, 7, 375-381.	28.6	1,998
3	Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane. Environmental Science & Technology, 2004, 38, 4040-4046.	10.0	1,708
4	Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11358-11363.	7.1	1,629
5	Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies. Science, 2012, 337, 686-690.	12.6	1,515
6	Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell. Environmental Science & Technology, 2004, 38, 2281-2285.	10.0	1,347
7	Membrane-based processes for sustainable power generation using water. Nature, 2012, 488, 313-319.	27.8	1,242
8	Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells. Environmental Science & Technology, 2007, 41, 3341-3346.	10.0	1,100
9	Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter. Environmental Science & Technology, 2008, 42, 8630-8640.	10.0	1,091
10	Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis. Environmental Science & Technology, 2009, 43, 3953-3958.	10.0	1,033
11	Electricity-producing bacterial communities in microbial fuel cells. Trends in Microbiology, 2006, 14, 512-518.	7.7	1,031
12	Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communications, 2006, 8, 489-494.	4.7	978
13	Electrochemically Assisted Microbial Production of Hydrogen from Acetate. Environmental Science & Technology, 2005, 39, 4317-4320.	10.0	913
14	Production of Electricity from Acetate or Butyrate Using a Single-Chamber Microbial Fuel Cell. Environmental Science & Technology, 2005, 39, 658-662.	10.0	892
15	Electroactive microorganisms in bioelectrochemical systems. Nature Reviews Microbiology, 2019, 17, 307-319.	28.6	890
16	Power Generation in Fed-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration. Environmental Science & Technology, 2005, 39, 5488-5493.	10.0	830
17	Microbial Fuel Cells—Challenges and Applications. Environmental Science & Technology, 2006, 40, 5172-5180.	10.0	804
18	The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 1993, 40, 1131-1140.	1.4	772

#	Article	IF	CITATIONS
19	Power Densities Using Different Cathode Catalysts (Pt and CoTMPP) and Polymer Binders (Nafion and) Tj ETQq1 364-369.	1 0.78431 10.0	4 rgBT /Ove 769
20	Hydrogen Production in a Single Chamber Microbial Electrolysis Cell Lacking a Membrane. Environmental Science & Technology, 2008, 42, 3401-3406.	10.0	768
21	Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell. Environmental Science & Technology, 2004, 38, 5809-5814.	10.0	766
22	Electricity generation from swine wastewater using microbial fuel cells. Water Research, 2005, 39, 4961-4968.	11.3	749
23	Scaling up microbial fuel cells and other bioelectrochemical systems. Applied Microbiology and Biotechnology, 2010, 85, 1665-1671.	3.6	726
24	A New Method for Water Desalination Using Microbial Desalination Cells. Environmental Science & Technology, 2009, 43, 7148-7152.	10.0	678
25	Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode and Reduced Electrode Spacing. Environmental Science & Technology, 2006, 40, 2426-2432.	10.0	646
26	Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochemistry Communications, 2007, 9, 492-496.	4.7	634
27	Power Generation Using Different Cation, Anion, and Ultrafiltration Membranes in Microbial Fuel Cells. Environmental Science & Technology, 2007, 41, 1004-1009.	10.0	613
28	Sustainable and efficient biohydrogen production via electrohydrogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18871-18873.	7.1	576
29	Cathode Performance as a Factor in Electricity Generation in Microbial Fuel Cells. Environmental Science & Technology, 2004, 38, 4900-4904.	10.0	570
30	Brewery wastewater treatment using air-cathode microbial fuel cells. Applied Microbiology and Biotechnology, 2008, 78, 873-880.	3.6	545
31	Electricity generation using membrane and salt bridge microbial fuel cells. Water Research, 2005, 39, 1675-1686.	11.3	524
32	Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Research, 2005, 39, 4673-4682.	11.3	521
33	Bacterial adhesion to glass and metal-oxide surfaces. Colloids and Surfaces B: Biointerfaces, 2004, 36, 81-90.	5.0	501
34	Use of Carbon Mesh Anodes and the Effect of Different Pretreatment Methods on Power Production in Microbial Fuel Cells. Environmental Science & amp; Technology, 2009, 43, 6870-6874.	10.0	486
35	Biological Hydrogen Production Measured in Batch Anaerobic Respirometers. Environmental Science & Technology, 2002, 36, 2530-2535.	10.0	477
36	Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells. Journal of Power Sources, 2010, 195, 1841-1844.	7.8	466

#	Article	IF	CITATIONS
37	Electricity generation from cysteine in a microbial fuel cell. Water Research, 2005, 39, 942-952.	11.3	449
38	Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Applied Microbiology and Biotechnology, 2005, 68, 23-30.	3.6	444
39	The Relative Effectiveness of pH Control and Heat Treatment for Enhancing Biohydrogen Gas Production. Environmental Science & Technology, 2003, 37, 5186-5190.	10.0	427
40	Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Applied Microbiology and Biotechnology, 2006, 70, 162-169.	3.6	423
41	Assessment of Microbial Fuel Cell Configurations and Power Densities. Environmental Science and Technology Letters, 2015, 2, 206-214.	8.7	423
42	Peer Reviewed: Extracting Hydrogen and Electricity from Renewable Resources. Environmental Science & Technology, 2004, 38, 160A-167A.	10.0	417
43	Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Applied Microbiology and Biotechnology, 2011, 89, 2053-2063.	3.6	378
44	Electricity Generation by <i>Rhodopseudomonas palustris</i> DX-1. Environmental Science & Technology, 2008, 42, 4146-4151.	10.0	375
45	Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technology, 2007, 98, 2568-2577.	9.6	369
46	Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresource Technology, 2010, 101, 469-475.	9.6	363
47	Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochemistry Communications, 2009, 11, 2177-2179.	4.7	358
48	Voltage reversal during microbial fuel cell stack operation. Journal of Power Sources, 2007, 167, 11-17.	7.8	348
49	Biohydrogen gas production from food processing and domestic wastewaters. International Journal of Hydrogen Energy, 2005, 30, 1535-1542.	7.1	334
50	The role of particulate carbohydrate exudates in the flocculation of diatom blooms. Deep-Sea Research Part I: Oceanographic Research Papers, 1994, 41, 335-357.	1.4	328
51	Settling Velocities of Fractal Aggregates. Environmental Science & Technology, 1996, 30, 1911-1918.	10.0	302
52	Batteries for Efficient Energy Extraction from a Water Salinity Difference. Nano Letters, 2011, 11, 1810-1813.	9.1	302
53	Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). International Journal of Hydrogen Energy, 2007, 32, 2296-2304.	7.1	299
54	Separator Characteristics for Increasing Performance of Microbial Fuel Cells. Environmental Science & Technology, 2009, 43, 8456-8461.	10.0	291

#	Article	IF	CITATIONS
55	Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Applied Microbiology and Biotechnology, 2008, 80, 349-355.	3.6	285
56	Microbial fuel cell performance with non-Pt cathode catalysts. Journal of Power Sources, 2007, 171, 275-281.	7.8	281
57	Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresource Technology, 2011, 102, 4468-4473.	9.6	281
58	Inhibition of Biohydrogen Production by Undissociated Acetic and Butyric Acids. Environmental Science & Technology, 2005, 39, 9351-9356.	10.0	273
59	Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. International Journal of Hydrogen Energy, 2009, 34, 6201-6210.	7.1	272
60	The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. Journal of Power Sources, 2009, 190, 271-278.	7.8	271
61	Isolation of the Exoelectrogenic Bacterium <i>Ochrobactrum anthropi</i> YZ-1 by Using a U-Tube Microbial Fuel Cell. Applied and Environmental Microbiology, 2008, 74, 3130-3137.	3.1	268
62	Energy from algae using microbial fuel cells. Biotechnology and Bioengineering, 2009, 103, 1068-1076.	3.3	266
63	Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresource Technology, 2011, 102, 4137-4143.	9.6	263
64	Fractal dimensions of aggregates determined from steady-state size distributions. Environmental Science & Technology, 1991, 25, 2031-2038.	10.0	262
65	Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy and Environmental Science, 2010, 3, 1114.	30.8	262
66	The electric picnic: synergistic requirements for exoelectrogenic microbial communities. Current Opinion in Biotechnology, 2011, 22, 378-385.	6.6	259
67	Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Research, 2009, 43, 1480-1488.	11.3	257
68	Scale-up of membrane-free single-chamber microbial fuel cells. Journal of Power Sources, 2008, 179, 274-279.	7.8	255
69	Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells. Biosensors and Bioelectronics, 2011, 30, 49-55.	10.1	255
70	Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnology and Bioengineering, 2008, 99, 1120-1127.	3.3	252
71	Production of Electricity from Proteins Using a Microbial Fuel Cell. Water Environment Research, 2006, 78, 531-537.	2.7	249
72	Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Bioresource Technology, 2011, 102, 388-394.	9.6	249

#	Article	IF	CITATIONS
73	Microbial desalination cells for energy production and desalination. Desalination, 2013, 308, 122-130.	8.2	246
74	A Two-Stage Microbial Fuel Cell and Anaerobic Fluidized Bed Membrane Bioreactor (MFC-AFMBR) System for Effective Domestic Wastewater Treatment. Environmental Science & Technology, 2014, 48, 4199-4206.	10.0	244
75	Simultaneous Cellulose Degradation and Electricity Production by <i>Enterobacter cloacae</i> in a Microbial Fuel Cell. Applied and Environmental Microbiology, 2009, 75, 3673-3678.	3.1	238
76	Energy Capture from Thermolytic Solutions in Microbial Reverse-Electrodialysis Cells. Science, 2012, 335, 1474-1477.	12.6	232
77	lonic Resistance and Permselectivity Tradeoffs in Anion Exchange Membranes. ACS Applied Materials & Interfaces, 2013, 5, 10294-10301.	8.0	232
78	High Surface Area Stainless Steel Brushes as Cathodes in Microbial Electrolysis Cells. Environmental Science & Technology, 2009, 43, 2179-2183.	10.0	230
79	Probing Bacterial Electrosteric Interactions Using Atomic Force Microscopy. Environmental Science & Technology, 2000, 34, 3354-3362.	10.0	226
80	Low Energy Desalination Using Battery Electrode Deionization. Environmental Science and Technology Letters, 2017, 4, 444-449.	8.7	224
81	Substrate-Enhanced Microbial Fuel Cells for Improved Remote Power Generation from Sediment-Based Systems. Environmental Science & amp; Technology, 2007, 41, 4053-4058.	10.0	221
82	Electrochemical technologies for wastewater treatment and resource reclamation. Environmental Science: Water Research and Technology, 2016, 2, 800-831.	2.4	220
83	Effect of Molecular Scale Roughness of Glass Beads on Colloidal and Bacterial Deposition. Environmental Science & Technology, 2002, 36, 184-189.	10.0	217
84	Influence of Fluid Velocity and Cell Concentration on the Transport of Motile and Nonmotile Bacteria in Porous Media. Environmental Science & Technology, 1998, 32, 1699-1708.	10.0	215
85	Increased biological hydrogen production with reduced organic loading. Water Research, 2005, 39, 3819-3826.	11.3	214
86	Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor. Water Research, 2006, 40, 728-734.	11.3	214
87	A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters. International Journal of Hydrogen Energy, 2010, 35, 8855-8861.	7.1	213
88	Rapid formation and sedimentation of large aggregates is predictable from coagulation rates (half-lives) of transparent exopolymer particles (TEP). Deep-Sea Research Part II: Topical Studies in Oceanography, 1995, 42, 203-214.	1.4	212
89	High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells. International Journal of Hydrogen Energy, 2009, 34, 5373-5381.	7.1	209
90	COD removal characteristics in air-cathode microbial fuel cells. Bioresource Technology, 2015, 176, 23-31.	9.6	209

#	Article	IF	CITATIONS
91	Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts. Bioresource Technology, 2011, 102, 361-366.	9.6	206
92	Analysis of polarization methods for elimination of power overshoot in microbial fuel cells. Electrochemistry Communications, 2011, 13, 54-56.	4.7	201
93	Hydrogen production with effluent from an ethanol–H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Biosensors and Bioelectronics, 2009, 24, 3055-3060.	10.1	197
94	Hydrogenase-independent uptake and metabolism of electrons by the archaeon <i>Methanococcus maripaludis</i> . ISME Journal, 2014, 8, 1673-1681.	9.8	196
95	A Review of Chlorate- and Perchlorate-Respiring Microorganisms. Bioremediation Journal, 1998, 2, 69-79.	2.0	195
96	Comparison of Electrode Reduction Activities of <i>Geobacter sulfurreducens</i> and an Enriched Consortium in an Air-Cathode Microbial Fuel Cell. Applied and Environmental Microbiology, 2008, 74, 7348-7355.	3.1	192
97	Phosphate recovery as struvite within a single chamber microbial electrolysis cell. Bioresource Technology, 2012, 107, 110-115.	9.6	192
98	Electricity Production from Steam-Exploded Corn Stover Biomass. Energy & Fuels, 2006, 20, 1716-1721.	5.1	190
99	Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. Journal of Power Sources, 2010, 195, 1130-1135.	7.8	190
100	Convergent development of anodic bacterial communities in microbial fuel cells. ISME Journal, 2012, 6, 2002-2013.	9.8	190
101	Contributions of Bacterial Surface Polymers, Electrostatics, and Cell Elasticity to the Shape of AFM Force Curves. Langmuir, 2002, 18, 5256-5262.	3.5	187
102	Source of methane and methods to control its formation in single chamber microbial electrolysis cells. International Journal of Hydrogen Energy, 2009, 34, 3653-3658.	7.1	187
103	Microbial Electrodialysis Cell for Simultaneous Water Desalination and Hydrogen Gas Production. Environmental Science & Technology, 2010, 44, 9578-9583.	10.0	185
104	Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black. Environmental Science & Technology, 2014, 48, 2075-2081.	10.0	185
105	Fractal geometry of marine snow and other biological aggregates. Limnology and Oceanography, 1990, 35, 130-136.	3.1	184
106	A Novel Anaerobic Electrochemical Membrane Bioreactor (AnEMBR) with Conductive Hollow-fiber Membrane for Treatment of Low-Organic Strength Solutions. Environmental Science & Technology, 2014, 48, 12833-12841.	10.0	183
107	Hydrogen Production by <i>Geobacter</i> Species and a Mixed Consortium in a Microbial Electrolysis Cell. Applied and Environmental Microbiology, 2009, 75, 7579-7587.	3.1	181
108	Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells. International Journal of Hydrogen Energy, 2010, 35, 428-437.	7.1	180

#	Article	IF	CITATIONS
109	Isolation of the exoelectrogenic denitrifying bacterium Comamonas denitrificans based on dilution to extinction. Applied Microbiology and Biotechnology, 2010, 85, 1575-1587.	3.6	179
110	Influence of Chemical and Physical Properties of Activated Carbon Powders on Oxygen Reduction and Microbial Fuel Cell Performance. Environmental Science & Technology, 2013, 47, 6704-6710.	10.0	178
111	Optimal Set Anode Potentials Vary in Bioelectrochemical Systems. Environmental Science & Technology, 2010, 44, 6036-6041.	10.0	177
112	Essential Data and Techniques for Conducting Microbial Fuel Cell and other Types of Bioelectrochemical System Experiments. ChemSusChem, 2012, 5, 988-994.	6.8	177
113	Biological hydrogen production using a membrane bioreactor. Biotechnology and Bioengineering, 2004, 87, 119-127.	3.3	175
114	Temporal-Spatial Changes in Viabilities and Electrochemical Properties of Anode Biofilms. Environmental Science & Technology, 2015, 49, 5227-5235.	10.0	175
115	A logical data representation framework for electricity-driven bioproduction processes. Biotechnology Advances, 2015, 33, 736-744.	11.7	174
116	Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity. Energy and Environmental Science, 2018, 11, 276-285.	30.8	172
117	Microbial Community Composition Is Unaffected by Anode Potential. Environmental Science & Technology, 2014, 48, 1352-1358.	10.0	171
118	Observation of Changes in Bacterial Cell Morphology Using Tapping Mode Atomic Force Microscopy. Langmuir, 2000, 16, 4563-4572.	3.5	167
119	Series Assembly of Microbial Desalination Cells Containing Stacked Electrodialysis Cells for Partial or Complete Seawater Desalination. Environmental Science & amp; Technology, 2011, 45, 5840-5845.	10.0	167
120	Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells. Biosensors and Bioelectronics, 2011, 28, 71-76.	10.1	166
121	Enrichment of Microbial Electrolysis Cell Biocathodes from Sediment Microbial Fuel Cell Bioanodes. Applied and Environmental Microbiology, 2012, 78, 5212-5219.	3.1	165
122	A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power. Energy and Environmental Science, 2015, 8, 343-349.	30.8	165
123	High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresource Technology, 2011, 102, 3571-3574.	9.6	164
124	Specific ion effects on membrane potential and the permselectivity of ion exchange membranes. Physical Chemistry Chemical Physics, 2014, 16, 21673-21681.	2.8	160
125	Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16176-16181.	7.1	159
126	Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Bioresource Technology, 2012, 106, 89-94.	9.6	159

#	Article	IF	CITATIONS
127	Tubular Membrane Cathodes for Scalable Power Generation in Microbial Fuel Cells. Environmental Science & Technology, 2007, 41, 3347-3353.	10.0	156
128	Microbial Fuel Cell Cathodes With Poly(dimethylsiloxane) Diffusion Layers Constructed around Stainless Steel Mesh Current Collectors. Environmental Science & Technology, 2010, 44, 1490-1495.	10.0	155
129	Peer Reviewed: Assessing the outlook for perchlorate remediation. Environmental Science & Technology, 2001, 35, 482A-487A.	10.0	154
130	Microbial Degradation of Perchlorate: Principles and Applications. Environmental Engineering Science, 2003, 20, 405-422.	1.6	151
131	The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells. International Journal of Hydrogen Energy, 2010, 35, 12020-12028.	7.1	151
132	Particle size spectra between 1 μm and 1 cm at Monterey Bay determined using multiple instruments. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 1739-1767.	1.4	149
133	Bioaugmentation for Electricity Generation from Corn Stover Biomass Using Microbial Fuel Cells. Environmental Science & Technology, 2009, 43, 6088-6093.	10.0	149
134	Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells. Bioresource Technology, 2012, 124, 68-76.	9.6	149
135	Enhanced transport of bacteria in porous media by sediment-phase and aqueous-phase natural organic matter. Water Research, 1996, 30, 923-931.	11.3	148
136	Inhibition of biohydrogen production by ammonia. Water Research, 2006, 40, 1167-1172.	11.3	147
137	Enhanced hydrogen and 1,3â€propanediol production from glycerol by fermentation using mixed cultures. Biotechnology and Bioengineering, 2009, 104, 1098-1106.	3.3	147
138	Power production in MFCs inoculated with <i>Shewanella oneidensis</i> MRâ€1 or mixed cultures. Biotechnology and Bioengineering, 2010, 105, 489-498.	3.3	147
139	Permeability of Fractal Aggregates. Water Research, 2001, 35, 3373-3380.	11.3	146
140	Effect of Set Potential on Hexavalent Chromium Reduction and Electricity Generation from Biocathode Microbial Fuel Cells. Environmental Science & Technology, 2011, 45, 5025-5031.	10.0	146
141	Single-Step Fabrication Using a Phase Inversion Method of Poly(vinylidene fluoride) (PVDF) Activated Carbon Air Cathodes for Microbial Fuel Cells. Environmental Science and Technology Letters, 2014, 1, 416-420.	8.7	145
142	Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal. Energy and Environmental Science, 2011, 4, 4662.	30.8	143
143	Longâ€Term Performance of Chemically and Physically Modified Activated Carbons in Air Cathodes of Microbial Fuel Cells. ChemElectroChem, 2014, 1, 1859-1866.	3.4	143
144	A Hybrid Microbial Fuel Cell Membrane Bioreactor with a Conductive Ultrafiltration Membrane Biocathode for Wastewater Treatment. Environmental Science & Technology, 2013, 47, 11821-11828.	10.0	142

#	Article	IF	CITATIONS
145	Adaptively Evolving Bacterial Communities for Complete and Selective Reduction of Cr(VI), Cu(II), and Cd(II) in Biocathode Bioelectrochemical Systems. Environmental Science & Technology, 2015, 49, 9914-9924.	10.0	140
146	Fractal dimensions of aggregates formed in different fluid mechanical environments. Water Research, 1995, 29, 443-453.	11.3	139
147	Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell. Applied Microbiology and Biotechnology, 2008, 80, 325-30.	3.6	137
148	Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems. Journal of Biotechnology, 2013, 168, 478-485.	3.8	137
149	Molecular Size Distributions of Dissolved Organic Matter. Journal of Environmental Engineering, ASCE, 1990, 116, 1046-1062.	1.4	134
150	Kinetics of Perchlorate- and Chlorate-Respiring Bacteria. Applied and Environmental Microbiology, 2001, 67, 2499-2506.	3.1	134
151	Ion Exchange Membrane Cathodes for Scalable Microbial Fuel Cells. Environmental Science & Technology, 2008, 42, 6967-6972.	10.0	134
152	The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells. Energy and Environmental Science, 2010, 3, 659.	30.8	134
153	Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell. Journal of Membrane Science, 2013, 428, 116-122.	8.2	131
154	<i>Methanobacterium</i> Dominates Biocathodic Archaeal Communities in Methanogenic Microbial Electrolysis Cells. ACS Sustainable Chemistry and Engineering, 2015, 3, 1668-1676.	6.7	130
155	Removal of Odors from Swine Wastewater by Using Microbial Fuel Cells. Applied and Environmental Microbiology, 2008, 74, 2540-2543.	3.1	129
156	Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell. Water Research, 2014, 54, 297-306.	11.3	129
157	Impact of electrode configurations on retention time and domestic wastewater treatment efficiency using microbial fuel cells. Water Research, 2015, 80, 41-46.	11.3	129
158	Advanced Materials, Technologies, and Complex Systems Analyses: Emerging Opportunities to Enhance Urban Water Security. Environmental Science & Technology, 2017, 51, 10274-10281.	10.0	129
159	Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells. Biosensors and Bioelectronics, 2010, 25, 1155-1159.	10.1	128
160	Evaluating a multi-panel air cathode through electrochemical and biotic tests. Water Research, 2019, 148, 51-59.	11.3	128
161	Removal of Headspace CO2Increases Biological Hydrogen Production. Environmental Science & amp; Technology, 2005, 39, 4416-4420.	10.0	127
162	Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis. ACS Sustainable Chemistry and Engineering, 2014, 2, 910-917.	6.7	127

#	Article	IF	CITATIONS
163	Electricity from methane by reversing methanogenesis. Nature Communications, 2017, 8, 15419.	12.8	127
164	Collision Frequencies of Fractal Aggregates with Small Particles by Differential Sedimentation. Environmental Science & Technology, 1997, 31, 1229-1236.	10.0	126
165	Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate. International Journal of Hydrogen Energy, 2010, 35, 8848-8854.	7.1	126
166	Bacterial transport in laboratory columns and filters: Influence of ionic strength and pH on collision efficiency. Water Research, 1995, 29, 1673-1680.	11.3	125
167	Vertically Grown Multiwalled Carbon Nanotube Anode and Nickel Silicide Integrated High Performance Microsized (1.25 μL) Microbial Fuel Cell. Nano Letters, 2012, 12, 791-795.	9.1	125
168	A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells. Biosensors and Bioelectronics, 2011, 26, 4526-4531.	10.1	120
169	Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells. Journal of Power Sources, 2011, 196, 9213-9219.	7.8	119
170	Macroscopic and Nanoscale Measurements of the Adhesion of Bacteria with Varying Outer Layer Surface Composition. Langmuir, 2003, 19, 2366-2371.	3.5	118
171	Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments. Bioresource Technology, 2011, 102, 7301-7306.	9.6	117
172	Change in microbial communities in acetate- and glucose-fed microbial fuel cells in the presence of light. Biosensors and Bioelectronics, 2009, 25, 105-111.	10.1	116
173	Electricity generation of single-chamber microbial fuel cells at low temperatures. Biosensors and Bioelectronics, 2011, 26, 1913-1917.	10.1	115
174	Performance of Gd-doped Ti-based Sb-SnO2 anodes for electrochemical destruction of phenol. Chemosphere, 2008, 70, 1629-1636.	8.2	114
175	The presence of hydrogenotrophic methanogens in the inoculum improves methane gas production in microbial electrolysis cells. Frontiers in Microbiology, 2014, 5, 778.	3.5	113
176	Advantages to microbes of growth in permeable aggregates in marine systems1. Limnology and Oceanography, 1987, 32, 1034-1048.	3.1	112
177	Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells. Water Science and Technology, 2009, 60, 1311-1317.	2.5	112
178	Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production. Environmental Science & Technology, 2011, 45, 5834-5839.	10.0	112
179	Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells. Bioresource Technology, 2012, 111, 167-174.	9.6	112
180	Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells. International Journal of Hydrogen Energy, 2013, 38, 1859-1865.	7.1	111

#	Article	IF	CITATIONS
181	Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials. Bioelectrochemistry, 2013, 90, 30-35.	4.6	111
182	A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design. Applied Microbiology and Biotechnology, 2012, 93, 2241-2248.	3.6	110
183	Extracellular Palladium Nanoparticle Production using Geobacter sulfurreducens. ACS Sustainable Chemistry and Engineering, 2013, 1, 1165-1171.	6.7	109
184	Immobilization of a Metal–Nitrogen–Carbon Catalyst on Activated Carbon with Enhanced Cathode Performance in Microbial Fuel Cells. ChemSusChem, 2016, 9, 2226-2232.	6.8	109
185	Formation of macroscopic organic aggregates (lake snow) in a large lake: The significance of transparent exopolymer particles, plankton, and zooplankton. Limnology and Oceanography, 1997, 42, 1651-1659.	3.1	108
186	Electricity Generation from Synthetic Acid-Mine Drainage (AMD) Water using Fuel Cell Technologies. Environmental Science & Technology, 2007, 41, 8149-8153.	10.0	108
187	Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells. Biosensors and Bioelectronics, 2010, 25, 2690-2695.	10.1	108
188	The impact of new cathode materials relative to baseline performance of microbial fuel cells all with the same architecture and solution chemistry. Energy and Environmental Science, 2017, 10, 1025-1033.	30.8	105
189	Blocking and ripening of colloids in porous media and their implications for bacterial transport. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 160, 291-307.	4.7	104
190	Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera. Applied Microbiology and Biotechnology, 2010, 88, 371-380.	3.6	104
191	Geobacter anodireducens sp. nov., an exoelectrogenic microbe in bioelectrochemical systems. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 3485-3491.	1.7	103
192	Collision Frequencies between Fractal Aggregates and Small Particles in a Turbulently Sheared Fluid. Environmental Science & Technology, 1997, 31, 1237-1242.	10.0	101
193	Evaluation of stainless steel cathodes and a bicarbonate buffer for hydrogen production in microbial electrolysis cells using a new method for measuring gas production. International Journal of Hydrogen Energy, 2011, 36, 160-166.	7.1	101
194	Hydrogen Generation in Microbial Reverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated Salt Solution. Environmental Science & Technology, 2012, 46, 5240-5246.	10.0	101
195	Set potential regulation reveals additional oxidation peaks of Geobacter sulfurreducens anodic biofilms. Electrochemistry Communications, 2012, 22, 116-119.	4.7	100
196	Graphene-Coated Hollow Fiber Membrane as the Cathode in Anaerobic Electrochemical Membrane Bioreactors – Effect of Configuration and Applied Voltage on Performance and Membrane Fouling. Environmental Science & Technology, 2016, 50, 4439-4447.	10.0	100
197	Sustained Perchlorate Degradation in an Autotrophic, Gas-Phase, Packed-Bed Bioreactor. Environmental Science & Technology, 2000, 34, 3018-3022.	10.0	99
198	Using single-chamber microbial fuel cells as renewable power sources of electro-Fenton reactors for organic pollutant treatment. Journal of Hazardous Materials, 2013, 252-253, 198-203.	12.4	99

#	Article	IF	CITATIONS
199	Oxygen-Reducing Biocathodes Operating with Passive Oxygen Transfer in Microbial Fuel Cells. Environmental Science & Technology, 2013, 47, 2085-2091.	10.0	99
200	Simultaneous removal of organic matter and salt ions from saline wastewater in bioelectrochemical systems. Desalination, 2013, 308, 115-121.	8.2	98
201	Enhancing bacterial transport for bioaugmentation of aquifers using low ionic strength solutions and surfactants. Water Research, 1999, 33, 1090-1100.	11.3	97
202	Electrochemical evaluation of molybdenum disulfide as a catalyst for hydrogen evolution in microbial electrolysis cells. International Journal of Hydrogen Energy, 2011, 36, 9439-9445.	7.1	97
203	Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater. Journal of Power Sources, 2011, 196, 8293-8300.	7.8	97
204	Biological Perchlorate Reduction in High-Salinity Solutions. Water Research, 2001, 35, 3034-3038.	11.3	94
205	AFM Imaging Artifacts due to Bacterial Cell Height and AFM Tip Geometry. Langmuir, 2003, 19, 851-857.	3.5	94
206	Comparison of microbial electrolysis cells operated with added voltage or by setting the anode potential. International Journal of Hydrogen Energy, 2011, 36, 10550-10556.	7.1	94
207	A Thermallyâ€Regenerative Ammoniaâ€Based Flow Battery for Electrical Energy Recovery from Waste Heat. ChemSusChem, 2016, 9, 873-879.	6.8	94
208	Treatment of perchlorate- and nitrate-contaminated groundwater in an autotrophic, gas phase, packed-bed bioreactor. Water Research, 2002, 36, 3647-3653.	11.3	93
209	Effect of nitrogen addition on the performance of microbial fuel cell anodes. Bioresource Technology, 2011, 102, 395-398.	9.6	93
210	Use of Pyrolyzed Iron Ethylenediaminetetraacetic Acid Modified Activated Carbon as Air–Cathode Catalyst in Microbial Fuel Cells. ACS Applied Materials & Interfaces, 2013, 5, 7862-7866.	8.0	93
211	H2-Producing bacterial communities from a heat-treated soil inoculum. Applied Microbiology and Biotechnology, 2004, 66, 166-173.	3.6	92
212	Effect of bacterial heterogeneity on adhesion to uniform collectors by monoclonal populations. FEMS Microbiology Letters, 1994, 124, 321-326.	1.8	91
213	Efficiency of different shear devices on flocculation. Water Research, 2008, 42, 1113-1121.	11.3	91
214	Improvement of activated carbons as oxygen reduction catalysts in neutral solutions by ammonia gas treatment and their performance in microbial fuel cells. Journal of Power Sources, 2013, 242, 756-761.	7.8	91
215	Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks. Environmental Science and Technology Letters, 2014, 1, 36-39.	8.7	91
216	Perchlorate removal in sand and plastic media bioreactors. Water Research, 2004, 38, 47-60.	11.3	90

#	Article	IF	CITATIONS
217	Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes. Bioresource Technology, 2011, 102, 372-375.	9.6	90
218	Scaling Bacterial Filtration Rates in Different Sized Porous Media. Journal of Environmental Engineering, ASCE, 1996, 122, 407-415.	1.4	89
219	Perchlorate reduction by a novel chemolithoautotrophic, hydrogen-oxidizing bacterium. Environmental Microbiology, 2002, 4, 570-576.	3.8	89
220	Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors. Journal of Power Sources, 2011, 196, 1097-1102.	7.8	89
221	Continuous treatment of high strength wastewaters using air-cathode microbial fuel cells. Bioresource Technology, 2016, 221, 96-101.	9.6	89
222	Bioflocculation as a microbial response to substrate limitations. Biotechnology and Bioengineering, 1988, 31, 91-101.	3.3	88
223	Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes for air-cathode microbial fuel cells. RSC Advances, 2012, 2, 12751-12758.	3.6	87
224	Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode. Journal of Power Sources, 2014, 247, 228-234.	7.8	87
225	Low-cost Fe–N–C catalyst derived from Fe (III)-chitosan hydrogel to enhance power production in microbial fuel cells. Chemical Engineering Journal, 2020, 380, 122522.	12.7	87
226	The effect of flow modes and electrode combinations on the performance of a multiple module microbial fuel cell installed at wastewater treatment plant. Water Research, 2016, 105, 351-360.	11.3	86
227	Electrolyte effects on hydrogen evolution and solution resistance in microbial electrolysis cells. Journal of Power Sources, 2009, 191, 203-208.	7.8	85
228	Microbial Reduction of Perchlorate in Pure and Mixed Culture Packed-Bed Bioreactors. Water Research, 2001, 35, 3071-3076.	11.3	84
229	Residence Time, Loading Force, pH, and Ionic Strength Affect Adhesion Forces between Colloids and Biopolymer-Coated Surfaces. Langmuir, 2005, 21, 7491-7500.	3.5	84
230	Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors. Applied Microbiology and Biotechnology, 2013, 97, 9885-9895.	3.6	84
231	Enhancing Lowâ€Grade Thermal Energy Recovery in a Thermally Regenerative Ammonia Battery Using Elevated Temperatures. ChemSusChem, 2015, 8, 1043-1048.	6.8	84
232	Modeling Bacterial Detachment During Transport Through Porous Media as a Residence-Time-Dependent Process. Water Resources Research, 1995, 31, 2649-2658.	4.2	83
233	Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell. Biotechnology and Bioengineering, 2008, 101, 1163-1169.	3.3	82
234	Electrochemical reduction of oxygen with iron phthalocyanine in neutral media. Journal of Applied Electrochemistry, 2009, 39, 705-711.	2.9	82

#	Article	IF	CITATIONS
235	In situ biofilm removal from air cathodes in microbial fuel cells treating domestic wastewater. Bioresource Technology, 2018, 265, 200-206.	9.6	82
236	Chlorate and nitrate reduction pathways are separately induced in the perchlorate-respiring bacterium Dechlorosoma sp. KJ and the chlorate-respiring bacterium Pseudomonas sp. PDA. Water Research, 2004, 38, 673-680.	11.3	79
237	A thermally regenerative ammonia battery with carbon-silver electrodes for converting low-grade waste heat to electricity. Journal of Power Sources, 2018, 373, 95-102.	7.8	79
238	Evaluation of Electrode and Solution Area-Based Resistances Enables Quantitative Comparisons of Factors Impacting Microbial Fuel Cell Performance. Environmental Science & Technology, 2019, 53, 3977-3986.	10.0	79
239	Fractal dimensions of marine snow determined from image analysis of in situ photographs. Deep-Sea Research Part I: Oceanographic Research Papers, 1994, 41, 1159-1169.	1.4	78
240	Use of a Coculture To Enable Current Production by Geobacter sulfurreducens. Applied and Environmental Microbiology, 2012, 78, 3484-3487.	3.1	78
241	Influence of solution concentration and salt types on the performance of reverse electrodialysis cells. Journal of Membrane Science, 2015, 494, 154-160.	8.2	78
242	Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species. Journal of Applied Microbiology, 2007, 103, 2258-2266.	3.1	77
243	Combined carbon mesh and small graphite fiber brush anodes to enhance and stabilize power generation in microbial fuel cells treating domestic wastewater. Journal of Power Sources, 2017, 356, 348-355.	7.8	77
244	Ammonium Removal from Domestic Wastewater Using Selective Battery Electrodes. Environmental Science and Technology Letters, 2018, 5, 578-583.	8.7	77
245	Analysis of Bacterial Adhesion Using a Gradient Force Analysis Method and Colloid Probe Atomic Force Microscopy. Langmuir, 2004, 20, 8817-8822.	3.5	76
246	Improved performance of single-chamber microbial fuel cells through control of membrane deformation. Biosensors and Bioelectronics, 2010, 25, 1825-1828.	10.1	76
247	Geochip-Based Functional Gene Analysis of Anodophilic Communities in Microbial Electrolysis Cells under Different Operational Modes. Environmental Science & Technology, 2010, 44, 7729-7735.	10.0	76
248	Methane Production in Microbial Reverse-Electrodialysis Methanogenesis Cells (MRMCs) Using Thermolytic Solutions. Environmental Science & Technology, 2014, 48, 8911-8918.	10.0	76
249	Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells. Applied Microbiology and Biotechnology, 2008, 80, 655-64.	3.6	75
250	Reducing pumping energy by using different flow rates of high and low concentration solutions in reverse electrodialysis cells. Journal of Membrane Science, 2015, 486, 215-221.	8.2	75
251	Different electrode configurations to optimize performance of multi-electrode microbial fuel cells for generating power or treating domestic wastewater. Journal of Power Sources, 2014, 249, 440-445.	7.8	74
252	Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery. Journal of Power Sources, 2017, 351, 45-50.	7.8	74

#	Article	IF	CITATIONS
253	Impact of Ohmic Resistance on Measured Electrode Potentials and Maximum Power Production in Microbial Fuel Cells. Environmental Science & Technology, 2018, 52, 8977-8985.	10.0	73
254	Interaction Forces between Colloids and Protein-Coated Surfaces Measured Using an Atomic Force Microscope. Environmental Science & amp; Technology, 2005, 39, 3592-3600.	10.0	72
255	Reducing organic loads in wastewater effluents from paper recycling plants using microbial fuel cells. Environmental Technology (United Kingdom), 2009, 30, 499-504.	2.2	72
256	Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cell. International Journal of Hydrogen Energy, 2011, 36, 15105-15110.	7.1	72
257	Pre-acclimation of a wastewater inoculum to cellulose in an aqueous–cathode MEC improves power generation in air–cathode MFCs. Bioresource Technology, 2011, 102, 367-371.	9.6	72
258	Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes. Journal of Power Sources, 2012, 218, 100-105.	7.8	70
259	Direct observation of phytoplankton, TEP and aggregates on polycarbonate filters using brightfield microscopy. Journal of Plankton Research, 1994, 16, 1811-1815.	1.8	69
260	Domestic wastewater treatment using multi-electrode continuous flow MFCs with a separator electrode assembly design. Applied Microbiology and Biotechnology, 2013, 97, 409-416.	3.6	69
261	Capacitive mixing power production from salinity gradient energy enhanced through exoelectrogen-generated ionic currents. Energy and Environmental Science, 2014, 7, 1159-1165.	30.8	69
262	Size distributions and fractal properties of particles during a simulated phytoplankton bloom in a mesocosm. Deep-Sea Research Part II: Topical Studies in Oceanography, 1995, 42, 125-138.	1.4	68
263	Energy harvesting from organic liquids in micro-sized microbial fuel cells. NPG Asia Materials, 2014, 6, e89-e89.	7.9	68
264	Persistence of Perchlorate and the Relative Numbers of Perchlorate- and Chlorate-Respiring Microorganisms in Natural Waters, Soils, and Wastewater. Bioremediation Journal, 2001, 5, 119-130.	2.0	67
265	Lactate Oxidation Coupled to Iron or Electrode Reduction by Geobacter sulfurreducens PCA. Applied and Environmental Microbiology, 2011, 77, 8791-8794.	3.1	67
266	Salt removal using multiple microbial desalination cells under continuous flow conditions. Desalination, 2013, 317, 17-22.	8.2	67
267	Harvesting Energy from Salinity Differences Using Battery Electrodes in a Concentration Flow Cell. Environmental Science & Technology, 2016, 50, 9791-9797.	10.0	67
268	Removal of copper from water using a thermally regenerative electrodeposition battery. Journal of Hazardous Materials, 2017, 322, 551-556.	12.4	67
269	A rapid selection strategy for an anodophilic consortium for microbial fuel cells. Bioresource Technology, 2010, 101, 5733-5735.	9.6	66
270	Importance of Molecular Details in Predicting Bacterial Adhesion to Hydrophobic Surfaces. Langmuir, 2004, 20, 10625-10629.	3.5	65

Bruce E Logan

#	Article	IF	CITATIONS
271	Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Water Research, 2011, 45, 303-307.	11.3	65
272	Assessment of four different cathode materials at different initial pHs using unbuffered catholytes in microbial electrolysis cells. International Journal of Hydrogen Energy, 2013, 38, 2951-2956.	7.1	65
273	Transport of Rodlike Colloids through Packed Beds. Environmental Science & Technology, 2006, 40, 6336-6340.	10.0	64
274	Powering microbial electrolysis cells by capacitor circuits charged using microbial fuel cell. Journal of Power Sources, 2013, 229, 198-202.	7.8	63
275	Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems. Physical Chemistry Chemical Physics, 2014, 16, 1632-1638.	2.8	63
276	Facilitation of bacterial transport through porous media by changes in solution and surface properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 107, 263-271.	4.7	62
277	Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs). Bioresource Technology, 2013, 136, 322-328.	9.6	62
278	Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms for continuous power generation in microbial fuel cells. Journal of Power Sources, 2014, 261, 278-284.	7.8	62
279	Reference and counter electrode positions affect electrochemical characterization of bioanodes in different bioelectrochemical systems. Biotechnology and Bioengineering, 2014, 111, 1931-1939.	3.3	61
280	Energy Recovery from Solutions with Different Salinities Based on Swelling and Shrinking of Hydrogels. Environmental Science & Technology, 2014, 48, 7157-7163.	10.0	61
281	Effect of O2 exposure on perchlorate reduction by Dechlorosoma sp. KJ. Water Research, 2004, 38, 1626-1632.	11.3	60
282	Improved electrical power production of thermally regenerative batteries using a poly(phenylene) Tj ETQq0 0 0 r	gBT /Overl 7.8	ock 10 Tf 50
283	Pilot scale microbial fuel cells using air cathodes for producing electricity while treating wastewater. Water Research, 2022, 215, 118208.	11.3	60
284	Syntrophic interactions improve power production in formic acid fed MFCs operated with set anode potentials or fixed resistances. Biotechnology and Bioengineering, 2012, 109, 405-414.	3.3	58
285	Electricity generation from fermented primary sludge using single-chamber air-cathode microbial fuel cells. Bioresource Technology, 2013, 128, 784-787.	9.6	58
286	Improving startup performance with carbon mesh anodes in separator electrode assembly microbial fuel cells. Bioresource Technology, 2013, 133, 74-81.	9.6	58
287	Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations. Bioresource Technology, 2014, 152, 46-52.	9.6	58
288	Using Flow Electrodes in Multiple Reactors in Series for Continuous Energy Generation from Capacitive Mixing. Environmental Science and Technology Letters, 2014, 1, 474-478.	8.7	58

#	Article	IF	CITATIONS
289	Patterned ion exchange membranes for improved power production in microbial reverse-electrodialysis cells. Journal of Power Sources, 2014, 271, 437-443.	7.8	58
290	Hydrogen production from continuous flow, microbial reverse-electrodialysis electrolysis cells treating fermentation wastewater. Bioresource Technology, 2015, 195, 51-56.	9.6	58
291	Cooperative cathode electrode and in situ deposited copper for subsequent enhanced Cd(II) removal and hydrogen evolution in bioelectrochemical systems. Bioresource Technology, 2016, 200, 565-571.	9.6	58
292	Performance of anaerobic fluidized membrane bioreactors using effluents of microbial fuel cells treating domestic wastewater. Bioresource Technology, 2016, 208, 58-63.	9.6	58
293	Addition of a carbon fiber brush improves anaerobic digestion compared to external voltage application. Water Research, 2021, 188, 116575.	11.3	58
294	Fractal dimensions and porosities ofZoogloea ramigeraandSaccharomyces cerevisaeaggregates. Biotechnology and Bioengineering, 1991, 38, 389-396.	3.3	57
295	Degradation of pentachlorophenol by fixed films of white rot fungi in rotating tube bioreactors. Water Research, 1995, 29, 61-67.	11.3	57
296	Transport of Pseudomonas fluorescens strain P17 through quartz sand columns as a function of water content. Journal of Contaminant Hydrology, 1999, 36, 73-89.	3.3	56
297	Physical and hydrodynamic properties of flocs produced during biological hydrogen production. Biotechnology and Bioengineering, 2004, 88, 854-860.	3.3	56
298	Analysis of chitin particle size on maximum power generation, power longevity, and Coulombic efficiency in solid–substrate microbial fuel cells. Journal of Power Sources, 2009, 192, 304-309.	7.8	56
299	Altering Anode Thickness To Improve Power Production in Microbial Fuel Cells with Different Electrode Distances. Energy & amp; Fuels, 2013, 27, 271-276.	5.1	56
300	Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate. Applied Microbiology and Biotechnology, 2016, 100, 5999-6011.	3.6	56
301	Energy efficient electrocoagulation using an air-breathing cathode to remove nutrients from wastewater. Chemical Engineering Journal, 2016, 292, 308-314.	12.7	55
302	High power densities created from salinity differences by combining electrode and Donnan potentials in a concentration flow cell. Energy and Environmental Science, 2017, 10, 1003-1012.	30.8	55
303	Set anode potentials affect the electron fluxes and microbial community structure in propionate-fed microbial electrolysis cells. Scientific Reports, 2016, 6, 38690.	3.3	54
304	Evaluation of multi-brush anode systems in microbial fuel cells. Bioresource Technology, 2013, 148, 379-385.	9.6	53
305	A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment. International Journal of Hydrogen Energy, 2013, 38, 13135-13142.	7.1	53
306	Effective phosphate removal for advanced water treatment using low energy, migration electric–field assisted electrocoagulation. Water Research, 2018, 138, 129-136.	11.3	53

#	Article	IF	CITATIONS
307	Applying the electrode potential slope method as a tool to quantitatively evaluate the performance of individual microbial electrolysis cell components. Bioresource Technology, 2019, 287, 121418.	9.6	53
308	Toxicity of Pentachlorophenol to Six Species of White Rot Fungi as a Function of Chemical Dose. Applied and Environmental Microbiology, 1992, 58, 4048-4050.	3.1	53
309	Measurement of bacterial collision efficiencies in porous media. Water Research, 1995, 29, 1151-1158.	11.3	52
310	Factors affecting the electro-catalytic characteristics of Eu doped SnO2/Sb electrode. Journal of Hazardous Materials, 2010, 178, 29-34.	12.4	52
311	Fractal dimensions of aggregates from shear devices. Journal - American Water Works Association, 1996, 88, 100-113.	0.3	51
312	Hydrogen production by Clostridium acetobutylicum ATCC 824Âand megaplasmid-deficient mutant M5 evaluated using a large headspace volume technique. International Journal of Hydrogen Energy, 2009, 34, 9347-9353.	7.1	51
313	Degradation of pentachlorophenol with the presence of fermentable and non-fermentable co-substrates in a microbial fuel cell. Bioresource Technology, 2011, 102, 8762-8768.	9.6	51
314	Optimization of catholyte concentration and anolyte pHs in two chamber microbial electrolysis cells. International Journal of Hydrogen Energy, 2012, 37, 18622-18628.	7.1	51
315	Increasing Desalination by Mitigating Anolyte pH Imbalance Using Catholyte Effluent Addition in a Multi-Anode Bench Scale Microbial Desalination Cell. ACS Sustainable Chemistry and Engineering, 2013, 1, 1200-1206.	6.7	51
316	Saline catholytes as alternatives to phosphate buffers in microbial fuel cells. Bioresource Technology, 2013, 132, 436-439.	9.6	51
317	LOCATION OF PROTEIN AND POLYSACCHARIDE HYDROLYTIC ACTIVITY IN SUSPENDED AND BIOFILM WASTEWATER CULTURES. Water Research, 1998, 32, 31-38.	11.3	50
318	Neutral hydrophilic cathode catalyst binders for microbial fuel cells. Energy and Environmental Science, 2011, 4, 928-934.	30.8	50
319	Power generation by packed-bed air-cathode microbial fuel cells. Bioresource Technology, 2013, 142, 109-114.	9.6	50
320	Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions. Bioresource Technology, 2013, 140, 399-405.	9.6	50
321	Evolving Microbial Communities in Cellulose-Fed Microbial Fuel Cell. Energies, 2018, 11, 124.	3.1	50
322	Impact of flow recirculation and anode dimensions on performance of a large scale microbial fuel cell. Journal of Power Sources, 2019, 412, 294-300.	7.8	50
323	<scp><i>G</i></scp> <i>eobacter</i> sp. <scp>SD</scp> â€1 with enhanced electrochemical activity in highâ€salt concentration solutions. Environmental Microbiology Reports, 2014, 6, 723-729.	2.4	49
324	Microbial fuel cells with an integrated spacer and separate anode and cathode modules. Environmental Science: Water Research and Technology, 2016, 2, 186-195.	2.4	49

#	Article	IF	CITATIONS
325	Using reverse osmosis membranes to control ion transport during water electrolysis. Energy and Environmental Science, 2020, 13, 3138-3148.	30.8	49
326	Hydrogen evolution catalyzed by viable and non-viable cells on biocathodes. International Journal of Hydrogen Energy, 2014, 39, 16841-16851.	7.1	48
327	Assessment of a metal–organic framework catalyst in air cathode microbial fuel cells over time with different buffers and solutions. Bioresource Technology, 2017, 233, 399-405.	9.6	48
328	Removal of bacteria in laboratory filters: models and experiments. Water Research, 1993, 27, 955-962.	11.3	47
329	The impact of ultraviolet light on bacterial adhesion to glass and metal oxide-coated surface. Colloids and Surfaces B: Biointerfaces, 2005, 41, 153-161.	5.0	47
330	Localized Attraction Correlates with Bacterial Adhesion to Glass and Metal Oxide Substrata. Environmental Science & Technology, 2006, 40, 2983-2988.	10.0	47
331	Mineralization of pentachlorophenol with enhanced degradation and power generation from air cathode microbial fuel cells. Biotechnology and Bioengineering, 2012, 109, 2211-2221.	3.3	47
332	Evaluation of flow fields on bubble removal and system performance in an ammonium bicarbonate reverse electrodialysis stack. Journal of Membrane Science, 2013, 446, 449-455.	8.2	47
333	Effect of Strong Acid Functional Groups on Electrode Rise Potential in Capacitive Mixing by Double Layer Expansion. Environmental Science & Technology, 2014, 48, 14041-14048.	10.0	47
334	Copper anode corrosion affects power generation in microbial fuel cells. Journal of Chemical Technology and Biotechnology, 2014, 89, 471-474.	3.2	47
335	Regenerable Nickel-Functionalized Activated Carbon Cathodes Enhanced by Metal Adsorption to Improve Hydrogen Production in Microbial Electrolysis Cells. Environmental Science & Technology, 2018, 52, 7131-7137.	10.0	47
336	Combining particle size spectra from a mesocosm experiment measured using photographic and aperture impedance (Coulter and Elzone) techniques. Deep-Sea Research Part II: Topical Studies in Oceanography, 1995, 42, 139-157.	1.4	46
337	Air-cathode structure optimization in separator-coupled microbial fuel cells. Biosensors and Bioelectronics, 2011, 30, 267-271.	10.1	46
338	Improved Electrocoagulation Reactor for Rapid Removal of Phosphate from Wastewater. ACS Sustainable Chemistry and Engineering, 2017, 5, 67-71.	6.7	46
339	Investigation of ionic polymer cathode binders for microbial fuel cells. Electrochimica Acta, 2010, 55, 3398-3403.	5.2	45
340	Impact of cathodic electron acceptor on microbial fuel cell internal resistance. Bioresource Technology, 2020, 316, 123919.	9.6	45
341	Molecular weight distribution of hydrolysis products during the biodegradation of model macromolecules in suspended and biofilm cultures. II. Dextran and dextrin. Water Research, 1997, 31, 2137-2145.	11.3	44
342	Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs). International Journal of Hydrogen Energy, 2011, 36, 13900-13906.	7.1	44

#	Article	IF	CITATIONS
343	Molecular weight distribution of hydrolysis products during biodegradation of model macromolecules in suspended and biofilm cultures I. Bovine serum albumin. Water Research, 1997, 31, 2127-2136.	11.3	43
344	Polymer Separators for High-Power, High-Efficiency Microbial Fuel Cells. ACS Applied Materials & Interfaces, 2012, 4, 6454-6457.	8.0	43
345	Examination of protein degradation in continuous flow, microbial electrolysis cells treating fermentation wastewater. Bioresource Technology, 2014, 171, 182-186.	9.6	43
346	Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula. Bioresource Technology, 2017, 239, 82-86.	9.6	43
347	Long-Term Succession Shows Interspecies Competition of <i>Geobacter</i> in Exoelectrogenic Biofilms. Environmental Science & Technology, 2021, 55, 14928-14937.	10.0	43
348	Adsorption and removal of pentachlorophenol by white rot fungi in batch culture. Water Research, 1994, 28, 1533-1538.	11.3	42
349	Evaluation of catalysts and membranes for high yield biohydrogen production via electrohydrogenesis in microbial electrolysis cells (MECs). Water Science and Technology, 2008, 58, 853-857.	2.5	42
350	A microbial fluidized electrode electrolysis cell (MFEEC) for enhanced hydrogen production. Journal of Power Sources, 2014, 271, 530-533.	7.8	42
351	Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes. Journal of Power Sources, 2014, 247, 655-659.	7.8	41
352	Development of carbon free diffusion layer for activated carbon air cathode of microbial fuel cells. Bioresource Technology, 2015, 197, 318-322.	9.6	41
353	Highâ€Performance Carbon Aerogel Air Cathodes for Microbial Fuel Cells. ChemSusChem, 2016, 9, 2788-2795.	6.8	41
354	Microbial fuel cellschallenges and applications. Environmental Science & Technology, 2006, 40, 5172-80.	10.0	41
355	Microbial Reverse-Electrodialysis Electrolysis and Chemical-Production Cell for H ₂ Production and CO ₂ Sequestration. Environmental Science and Technology Letters, 2014, 1, 231-235.	8.7	40
356	Current density reversibly alters metabolic spatial structure of exoelectrogenic anode biofilms. Journal of Power Sources, 2017, 356, 566-571.	7.8	40
357	Nickel powder blended activated carbon cathodes for hydrogen production in microbial electrolysis cells. International Journal of Hydrogen Energy, 2019, 44, 13169-13174.	7.1	40
358	Electrochemical analysis of separators used in single-chamber, air-cathode microbial fuel cells. Electrochimica Acta, 2013, 89, 45-51.	5.2	39
359	Unraveling the contributions of internal resistance components in two-chamber microbial fuel cells using the electrode potential slope analysis. Electrochimica Acta, 2020, 348, 136291.	5.2	39
360	Using an anion exchange membrane for effective hydroxide ion transport enables high power densities in microbial fuel cells. Chemical Engineering Journal, 2021, 422, 130150.	12.7	39

#	Article	IF	CITATIONS
361	Enzymes responsible for chlorate reduction byPseudomonassp. are different from those used for perchlorate reduction byAzospirasp FEMS Microbiology Letters, 2005, 247, 153-159.	1.8	38
362	Diffusion layer characteristics for increasing the performance of activated carbon air cathodes in microbial fuel cells. Environmental Science: Water Research and Technology, 2016, 2, 266-273.	2.4	38
363	Polymer coatings as separator layers for microbial fuel cell cathodes. Journal of Power Sources, 2011, 196, 3009-3014.	7.8	37
364	Microbial reverse-electrodialysis chemical-production cell for acid and alkali production. Electrochemistry Communications, 2013, 31, 52-55.	4.7	37
365	Electrical current generation in microbial electrolysis cells by hyperthermophilic archaea Ferroglobus placidus and Geoglobus ahangari. Bioelectrochemistry, 2018, 119, 142-149.	4.6	37
366	Enabling the use of seawater for hydrogen gas production in water electrolyzers. Joule, 2021, 5, 760-762.	24.0	37
367	High current densities enable exoelectrogens to outcompete aerobic heterotrophs for substrate. Biotechnology and Bioengineering, 2014, 111, 2163-2169.	3.3	36
368	Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions. Journal of Power Sources, 2014, 257, 454-460.	7.8	36
369	Microbial electrolysis desalination and chemical-production cell for CO2 sequestration. Bioresource Technology, 2014, 159, 24-29.	9.6	36
370	Evaluating Batteryâ€like Reactions to Harvest Energy from Salinity Differences using Ammonium Bicarbonate Salt Solutions. ChemSusChem, 2016, 9, 981-988.	6.8	36
371	Effect of pre-acclimation of granular activated carbon on microbial electrolysis cell startup and performance. Bioelectrochemistry, 2017, 113, 20-25.	4.6	36
372	Enhanced electricity generation and effective water filtration using graphene-based membrane air-cathodes in microbial fuel cells. Journal of Power Sources, 2018, 395, 221-227.	7.8	36
373	Measurement of dissolved free and combined amino acids in unconcentrated wastewaters using high performance liquid chromatography. Water Environment Research, 1995, 67, 118-125.	2.7	35
374	Interactions of biopolymers with silica surfaces: Force measurements and electronic structure calculation studies. Geochimica Et Cosmochimica Acta, 2006, 70, 3803-3819.	3.9	35
375	Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells. Journal of Power Sources, 2011, 196, 9317-9321.	7.8	35
376	Mesoporous nitrogen-rich carbon materials as cathode catalysts in microbial fuel cells. Journal of Power Sources, 2014, 269, 212-215.	7.8	35
377	Enhanced water desalination efficiency in an air-cathode stacked microbial electrodeionization cell (SMEDIC). Journal of Membrane Science, 2014, 469, 364-370.	8.2	34
378	Attenuation of trace organic compounds (TOrCs) inÂbioelectrochemical systems. Water Research, 2015, 73, 56-67.	11.3	34

#	Article	IF	CITATIONS
379	Hydrogen production rates with closely-spaced felt anodes and cathodes compared to brush anodes in two-chamber microbial electrolysis cells. International Journal of Hydrogen Energy, 2018, 43, 9599-9606.	7.1	34
380	Polyelectrolyte-Based Sacrificial Protective Layer for Fouling Control in Reverse Osmosis Desalination. Environmental Science and Technology Letters, 2018, 5, 584-590.	8.7	34
381	Increased Bacterial Uptake of Macromolecular Substrates with Fluid Shear. Applied and Environmental Microbiology, 1991, 57, 3093-3100.	3.1	34
382	Settling and coagulating behaviour of fractal aggregates. Water Science and Technology, 2000, 42, 253-258.	2.5	33
383	Fixed-Bed Bioreactor Treating Perchlorate-Contaminated Waters. Environmental Engineering Science, 2000, 17, 257-265.	1.6	33
384	Organic loading rates affect composition of soil-derived bacterial communities during continuous, fermentative biohydrogen production. International Journal of Hydrogen Energy, 2008, 33, 6566-6576.	7.1	33
385	Enhanced electrode-reducing rate during the enrichment process in an air-cathode microbial fuel cell. Applied Microbiology and Biotechnology, 2012, 94, 1087-1094.	3.6	33
386	Minimal RED Cell Pairs Markedly Improve Electrode Kinetics and Power Production in Microbial Reverse Electrodialysis Cells. Environmental Science & Technology, 2013, 47, 14518-14524.	10.0	33
387	Efficient CO2 conversion to formic acid in a novel microbial photoelectrochemical cell using a visible-light responsive Co3O4 nanorod-arrayed photocathode. Applied Catalysis B: Environmental, 2020, 276, 119102.	20.2	33
388	Quantifying the factors limiting performance and rates in microbial fuel cells using the electrode potential slope analysis combined with electrical impedance spectroscopy. Electrochimica Acta, 2020, 348, 136330.	5.2	33
389	Measurement of chlorite dismutase activities in perchlorate respiring bacteria. Journal of Microbiological Methods, 2003, 54, 239-247.	1.6	32
390	Molecular Assessment of Inoculated and Indigenous Bacteria in Biofilms from a Pilot-Scale Perchlorate-Reducing Bioreactor. Microbial Ecology, 2005, 49, 388-398.	2.8	32
391	Application of phase-pure nickel phosphide nanoparticles as cathode catalysts for hydrogen production in microbial electrolysis cells. Bioresource Technology, 2019, 293, 122067.	9.6	32
392	Improving the Thermodynamic Energy Efficiency of Battery Electrode Deionization Using Flow-Through Electrodes. Environmental Science & Technology, 2020, 54, 3628-3635.	10.0	32
393	Poly(vinyl alcohol) separators improve the coulombic efficiency of activated carbon cathodes in microbial fuel cells. Electrochemistry Communications, 2013, 34, 150-152.	4.7	31
394	Anode acclimation methods and their impact on microbial electrolysis cells treating fermentation effluent. International Journal of Hydrogen Energy, 2015, 40, 6782-6791.	7.1	31
395	Effect of buffer charge on performance of air-cathodes used in microbial fuel cells. Electrochimica Acta, 2016, 194, 441-447.	5.2	31
396	A two-staged system to generate electricity in microbial fuel cells using methane. Chemical Engineering Journal, 2018, 352, 262-267.	12.7	31

Bruce E Logan

#	Article	IF	CITATIONS
397	High performance flow through microbial fuel cells with anion exchange membrane. Journal of Power Sources, 2020, 475, 228633.	7.8	31
398	Impact of external resistance acclimation on charge transfer and diffusion resistance in bench-scale microbial fuel cells. Bioresource Technology, 2020, 318, 123921.	9.6	31
399	Increased mass transfer to microorganisms with fluid motion. Biotechnology and Bioengineering, 1990, 35, 1135-1144.	3.3	30
400	Degradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium grown in ammonium lignosulphonate media. Biodegradation, 1996, 7, 175-182.	3.0	30
401	Collision Frequencies of Fractal Bacterial Aggregates with Small Particles in a Sheared Fluid. Environmental Science & Technology, 1999, 33, 2247-2251.	10.0	30
402	Addition of acetate improves stability of power generation using microbial fuel cells treating domestic wastewater. Bioelectrochemistry, 2017, 118, 154-160.	4.6	30
403	Insignificant Role of Hydrodynamic Dispersion on Bacterial Transport. Journal of Environmental Engineering, ASCE, 2000, 126, 491-500.	1.4	29
404	Immobilization of anode-attached microbes in a microbial fuel cell. AMB Express, 2012, 2, 2.	3.0	29
405	Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy. ACS Macro Letters, 2013, 2, 814-817.	4.8	29
406	Poly(vinylidene fluoride-co-hexafluoropropylene) phase inversion coating as a diffusion layer to enhance the cathode performance in microbial fuel cells. Journal of Power Sources, 2014, 269, 379-384.	7.8	29
407	AQDS immobilized solid-phase redox mediators and their role during bioelectricity generation and RR2 decolorization in air-cathode single-chamber microbial fuel cells. Bioelectrochemistry, 2017, 118, 123-130.	4.6	29
408	Simultaneously enhancing power density and coulombic efficiency with a hydrophobic Fe–N4/activated carbon air cathode for microbial fuel cells. Journal of Power Sources, 2020, 465, 228264.	7.8	29
409	Unveiling the correlation of Fe3O4 fractions upon the adsorption behavior of sulfamethoxazole on magnetic activated carbon. Science of the Total Environment, 2021, 757, 143717.	8.0	29
410	Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and) Tj ETQq0 0	0 rgBT /Oʻ 19.0	verlgck 10 Tf
411	Bacterial Transport in NAPL-Contaminated Porous Media. Journal of Environmental Engineering, ASCE, 2000, 126, 657-666.	1.4	28
412	Integrating Reverseâ€Electrodialysis Stacks with Flow Batteries for Improved Energy Recovery from Salinity Gradients and Energy Storage. ChemSusChem, 2017, 10, 797-803.	6.8	28
413	Mutual benefits of acetate and mixed tungsten and molybdenum for their efficient removal in 40â€ [−] L microbial electrolysis cells. Water Research, 2019, 162, 358-368.	11.3	28
414	Balancing Water Dissociation and Current Densities To Enable Sustainable Hydrogen Production with Bipolar Membranes in Microbial Electrolysis Cells. Environmental Science & Technology, 2019, 53, 14761-14768.	10.0	28

#	Article	IF	CITATIONS
415	Impact of surface area and current generation of microbial electrolysis cell electrodes inserted into anaerobic digesters. Chemical Engineering Journal, 2021, 426, 131281.	12.7	28
416	Theoretical analysis of size distributions determined with screens and filters. Limnology and Oceanography, 1993, 38, 372-381.	3.1	27
417	Fractal dimensions of small (15–200 μm) particles in Eastern Pacific coastal waters. Deep-Sea Research Part I: Oceanographic Research Papers, 1998, 45, 115-131.	1.4	27
418	Spectral force analysis using atomic force microscopy reveals the importance of surface heterogeneity in bacterial and colloid adhesion to engineered surfaces. Colloids and Surfaces B: Biointerfaces, 2008, 62, 232-237.	5.0	27
419	Impact of catholyte recirculation on different 3-dimensional stainless steel cathodes in microbial electrolysis cells. International Journal of Hydrogen Energy, 2017, 42, 29708-29715.	7.1	27
420	Mitigating external and internal cathode fouling using a polymer bonded separator in microbial fuel cells. Bioresource Technology, 2018, 249, 1080-1084.	9.6	27
421	Simultaneous Hydrogen Generation and Waste Acid Neutralization in a Reverse Electrodialysis System. ACS Sustainable Chemistry and Engineering, 2014, 2, 2211-2216.	6.7	26
422	Impact of cleaning procedures on restoring cathode performance for microbial fuel cells treating domestic wastewater. Bioresource Technology, 2019, 290, 121759.	9.6	26
423	Interaction Forces Measured Using AFM between Colloids and Surfaces Coated with Both Dextran and Protein. Langmuir, 2006, 22, 4720-4727.	3.5	25
424	Alamethicin Suppresses Methanogenesis and Promotes Acetogenesis in Bioelectrochemical Systems. Applied and Environmental Microbiology, 2015, 81, 3863-3868.	3.1	25
425	A pH-Gradient Flow Cell for Converting Waste CO ₂ into Electricity. Environmental Science and Technology Letters, 2017, 4, 49-53.	8.7	25
426	Variable retention of diatoms on screens during size separations. Limnology and Oceanography, 1994, 39, 390-395.	3.1	24
427	Adhesion forces between functionalized latex microspheres and protein-coated surfaces evaluated using colloid probe atomic force microscopy. Colloids and Surfaces B: Biointerfaces, 2006, 48, 84-94.	5.0	24
428	Substantial Humic Acid Adsorption to Activated Carbon Air Cathodes Produces a Small Reduction in Catalytic Activity. Environmental Science & Technology, 2016, 50, 8904-8909.	10.0	24
429	Metal-Ion Depletion Impacts the Stability and Performance of Battery Electrode Deionization over Multiple Cycles. Environmental Science & Technology, 2021, 55, 5412-5421.	10.0	24
430	Molecular Size Distributions of Dissolved Organic Matter in Wastewater Transformed by Treatment in a Full-Scale Trickling Filter. Water Environment Research, 2000, 72, 277-281.	2.7	23
431	Comparison of cathode catalyst binders for the hydrogen evolution reaction in microbial electrolysis cells. International Journal of Hydrogen Energy, 2017, 42, 15739-15744.	7.1	23
432	Removal of binary Cr(VI) and Cd(II) from the catholyte of MFCs and determining their fate in EAB using fluorescence probes. Bioelectrochemistry, 2018, 122, 61-68.	4.6	23

#	Article	IF	CITATIONS
433	Molecular size distributions of a macromolecular polysaccharide (dextran) during its biodegradation in batch and continuous cultures. Water Research, 1994, 28, 1873-1878.	11.3	22
434	Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells. Journal of Power Sources, 2016, 332, 447-453.	7.8	22
435	Copper current collectors reduce long-term fouling of air cathodes in microbial fuel cells. Environmental Science: Water Research and Technology, 2018, 4, 513-519.	2.4	22
436	Using a vapor-fed anode and saline catholyte to manage ion transport in a proton exchange membrane electrolyzer. Energy and Environmental Science, 2021, 14, 6041-6049.	30.8	22
437	Comparison of complex effluent treatability in different bench scale microbial electrolysis cells. Bioresource Technology, 2014, 170, 530-537.	9.6	21
438	Addition of conductive particles to improve the performance of activated carbon air-cathodes in microbial fuel cells. Environmental Science: Water Research and Technology, 2017, 3, 806-810.	2.4	21
439	Electrotrophic activity and electrosynthetic acetate production by Desulfobacterium autotrophicum HRM2. Bioelectrochemistry, 2018, 123, 150-155.	4.6	21
440	Deep learning for pH prediction in water desalination using membrane capacitive deionization. Desalination, 2021, 516, 115233.	8.2	21
441	Preface. Bioresource Technology, 2011, 102, 1.	9.6	20
442	Current generation in microbial electrolysis cells with addition of amorphous ferric hydroxide, Tween 80, or DNA. International Journal of Hydrogen Energy, 2012, 37, 16943-16950.	7.1	20
443	Using cathode spacers to minimize reactor size in air cathode microbial fuel cells. Bioresource Technology, 2012, 110, 273-277.	9.6	20
444	The Global Challenge of Sustainable Seawater Desalination. Environmental Science and Technology Letters, 2017, 4, 197-197.	8.7	20
445	Comparison of different chemical treatments of brush and flat carbon electrodes to improve performance of microbial fuel cells. Bioresource Technology, 2021, 342, 125932.	9.6	20
446	Oxygen Transfer in Trickling Filters. Journal of Environmental Engineering, ASCE, 1993, 119, 1059-1076.	1.4	19
447	Measurement of Biocolloid Collision Efficiencies for Granular Activated Carbon by Use of a Two-Layer Filtration Model. Applied and Environmental Microbiology, 2006, 72, 5190-5196.	3.1	19
448	Exoelectrogenic biofilm as a template for sustainable formation of a catalytic mesoporous structure. Biotechnology and Bioengineering, 2014, 111, 2349-2354.	3.3	19
449	Effective Biofouling Control Using Periodic H ₂ O ₂ Cleaning with CuO Modified and Polypropylene Spacers. ACS Sustainable Chemistry and Engineering, 2019, 7, 9582-9587.	6.7	19
450	Chronoamperometry and linear sweep voltammetry reveals the adverse impact of high carbonate buffer concentrations on anode performance in microbial fuel cells. Journal of Power Sources, 2020, 476, 228715.	7.8	19

#	Article	IF	CITATIONS
451	Continuous Flow Microbial Flow Cell with an Anion Exchange Membrane for Treating Low Conductivity and Poorly Buffered Wastewater. ACS Sustainable Chemistry and Engineering, 2021, 9, 2946-2954.	6.7	19
452	The effect of high applied voltages on bioanodes of microbial electrolysis cells in the presence of chlorides. Chemical Engineering Journal, 2021, 405, 126742.	12.7	19
453	Magnetic seeding coagulation: Effect of Al species and magnetic particles on coagulation efficiency, residual Al, and floc properties. Chemosphere, 2021, 268, 129363.	8.2	19
454	The impact of different types of high surface area brush fibers with different electrical conductivity and biocompatibility on the rates of methane generation in anaerobic digestion. Science of the Total Environment, 2021, 787, 147683.	8.0	19
455	Cationic fluorinated polymer binders for microbial fuel cell cathodes. RSC Advances, 2012, 2, 5856.	3.6	18
456	The use of cloth fabric diffusion layers for scalable microbial fuel cells. Biochemical Engineering Journal, 2013, 73, 49-52.	3.6	18
457	Generating Electricity from Wastewater Treatment. Water Environment Research, 2005, 77, 211-211.	2.7	17
458	Spray-on polyvinyl alcohol separators and impact on power production in air-cathode microbial fuel cells with different solution conductivities. Bioresource Technology, 2014, 172, 156-161.	9.6	17
459	Surveying Manganese Oxides as Electrode Materials for Harnessing Salinity Gradient Energy. Environmental Science & Technology, 2020, 54, 5746-5754.	10.0	17
460	A gas chromatographic-based headspace biochemical oxygen demand test. Water Environment Research, 1997, 69, 206-214.	2.7	16
461	Electro-Forward Osmosis. Environmental Science & Technology, 2019, 53, 8352-8361.	10.0	16
462	Sacrificial coating development for biofouling control in membrane systems. Desalination, 2020, 496, 114650.	8.2	16
463	An All-Aqueous Thermally Regenerative Ammonia Battery Chemistry Using Cu(I, II) Redox Reactions. Journal of the Electrochemical Society, 2021, 168, 070523.	2.9	16
464	Vapor-Fed Cathode Microbial Electrolysis Cells with Closely Spaced Electrodes Enables Greatly Improved Performance. Environmental Science & Technology, 2022, 56, 1211-1220.	10.0	16
465	High-rate microbial electrosynthesis using a zero-gap flow cell and vapor-fed anode design. Water Research, 2022, 219, 118597.	11.3	16
466	Adhesion characteristics of two Burkholderia cepacia strains examined using colloid probe microscopy and gradient force analysis. Colloids and Surfaces B: Biointerfaces, 2007, 59, 46-51.	5.0	14
467	The importance of OHâ^' transport through anion exchange membrane in microbial electrolysis cells. International Journal of Hydrogen Energy, 2018, 43, 2645-2653.	7.1	14
468	Using copper-based biocathodes to improve carbon dioxide conversion efficiency into methane in microbial methanogenesis cells. Chemical Engineering Journal, 2022, 435, 135076.	12.7	14

#	Article	IF	CITATIONS
469	Efficient In Situ Utilization of Caustic for Sequential Recovery and Separation of Sn, Fe, and Cu in Microbial Fuel Cells. ChemElectroChem, 2018, 5, 1658-1669.	3.4	13
470	Fabrication of Nano-Structured Stacked Sphere SnO ₂ -Sb Electrode with Enhanced Performance Using a Situ Solvothermal Synthesis Method. Journal of the Electrochemical Society, 2018, 165, E208-E213.	2.9	13
471	Recovery of ammonium and phosphate using battery deionization in a background electrolyte. Environmental Science: Water Research and Technology, 2020, 6, 1688-1696.	2.4	13
472	Separation and recovery of ammonium from industrial wastewater containing methanol using copper hexacyanoferrate (CuHCF) electrodes. Water Research, 2021, 188, 116532.	11.3	13
473	Power and energy capacity tradeoffs in an all-aqueous copper thermally regenerative ammonia battery. Journal of Power Sources, 2022, 531, 231339.	7.8	13
474	Biotemplated Palladium Catalysts Can Be Stabilized on Different Support Materials. ChemElectroChem, 2014, 1, 1867-1873.	3.4	12
475	The HBOD test: a new method for determining biochemical oxygen demand. Water Environment Research, 1993, 65, 862-868.	2.7	11
476	Analysis of Overall Perchlorate Removal Rates in Packed-Bed Bioreactors. Journal of Environmental Engineering, ASCE, 2001, 127, 469-471.	1.4	11
477	Conjugated oligoelectrolyte represses hydrogen oxidation by Geobacter sulfurreducens in microbial electrolysis cells. Bioelectrochemistry, 2015, 106, 379-382.	4.6	11
478	Enumeration of exoelectrogens in microbial fuel cell effluents fed acetate or wastewater substrates. Biochemical Engineering Journal, 2021, 165, 107816.	3.6	11
479	Bacterial Transport in Gas-Sparged Porous Medium. Journal of Environmental Engineering, ASCE, 1999, 125, 668-673.	1.4	10
480	Power generation in MFCs with architectures based on tubular cathodes or fully tubular reactors. Water Science and Technology, 2011, 64, 2253-2258.	2.5	10
481	Adapting Aluminum-Doped Zinc Oxide for Electrically Conductive Membranes Fabricated by Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2020, 12, 963-969.	8.0	10
482	Energy Use for Electricity Generation Requires an Assessment More Directly Relevant to Climate Change. ACS Energy Letters, 2020, 5, 3514-3517.	17.4	10
483	Hydrodynamic interventions and measurement protocols to quantify and mitigate power overshoot in microbial fuel cells using microfluidics. Electrochimica Acta, 2022, 405, 139771.	5.2	10
484	Comment on "Application of clean-bed filtration theory to bacterial deposition in porous media". Environmental Science & Technology, 1993, 27, 984-985.	10.0	9
485	Growth Kinetics of Mixed Cultures under Chlorate-Reducing Conditions. Journal of Environmental Engineering, ASCE, 1998, 124, 1008-1011.	1.4	9
486	Enhanced Toluene Degradation Under Chlorate-Reducing Conditions by Bioaugmentation of Sand Columns with Chlorate- and Toluene-Degrading Enrichments. Bioremediation Journal, 2002, 6, 87-95.	2.0	9

#	Article	IF	CITATIONS
487	Microbial Electrodeionization Cell Stack for Sustainable Desalination, Wastewater Treatment and Energy Recovery. Proceedings of the Water Environment Federation, 2013, 2013, 222-227.	0.0	9
488	Repression of hydrogen uptake using conjugated oligoelectrolytes in microbial electrolysis cells. International Journal of Hydrogen Energy, 2014, 39, 19407-19415.	7.1	9
489	An aerated and fluidized bed membrane bioreactor for effective wastewater treatment with low membrane fouling. Environmental Science: Water Research and Technology, 2016, 2, 994-1003.	2.4	9
490	Engineering a membrane based air cathode for microbial fuel cells via hot pressing and using multi-catalyst layer stacking. Environmental Science: Water Research and Technology, 2016, 2, 858-863.	2.4	9
491	The impact of fiber arrangement and advective transport in porous electrodes for silver-based thermally regenerated batteries. Electrochimica Acta, 2021, 388, 138527.	5.2	9
492	Changes in electrode resistances and limiting currents as a function of microbial electrolysis cell reactor configurations. Electrochimica Acta, 2021, 388, 138590.	5.2	9
493	Thermodynamic and Kinetic Analyses of Ion Intercalation/Deintercalation Using Different Temperatures on NiHCF Electrodes for Battery Electrode Deionization. Environmental Science & Technology, 2022, 56, 8932-8941.	10.0	9
494	Computer Simulation of Ddt Distribution in Palos Verdes Shelf Sediments. Journal of Environmental Engineering, ASCE, 1989, 115, 221-238.	1.4	8
495	A rapid method to screen fungi for resistance to toxic chemicals. Biodegradation, 1993, 4, 125-129.	3.0	8
496	Peer Reviewed: Finding Solutions for Tough Environmental Problems. Environmental Science & Technology, 1998, 32, 502A-507A.	10.0	8
497	Comment on "A Method for Calculating Bacterial Deposition Coefficients Using the Fraction of Bacteria Recovered from Laboratory Columns― Environmental Science & Technology, 1999, 33, 1316-1317.	10.0	8
498	Enhanced Charge Separation of TiO ₂ Nanotubes Photoelectrode for Efficient Conversion of CO ₂ . ACS Sustainable Chemistry and Engineering, 2018, 6, 12953-12960.	6.7	8
499	Stepwise ammonium enrichment using selective battery electrodes. Environmental Science: Water Research and Technology, 2020, 6, 1649-1657.	2.4	8
500	Co-precipitation synthesis control for sodium ion adsorption capacity and cycle life of copper hexacyanoferrate electrodes in battery electrode deionization. Chemical Engineering Journal, 2022, 435, 135001.	12.7	8
501	A conceptual model describing macromolecule degradation by suspended cultures and biofilms. Water Science and Technology, 1998, 37, 231-234.	2.5	7
502	Differences between Chemisorbed and Physisorbed Biomolecules on Particle Deposition to Hydrophobic Surfacesâ€. Environmental Science & Technology, 2005, 39, 6371-6377.	10.0	7
503	Response to Comment on Microbial Community Composition Is Unaffected by Anode Potential. Environmental Science & Technology, 2014, 48, 14853-14854.	10.0	7
504	Urgency at the Nexus of Food, Energy, and Water Systems. Environmental Science and Technology Letters, 2015, 2, 149-150.	8.7	7

#	Article	IF	CITATIONS
505	Inhibition of aerobic respiration and dissimilatory perchlorate reduction using cyanide. FEMS Microbiology Letters, 2004, 239, 229-234.	1.8	6
506	Impact of acclimation methods on microbial communities and performance of anaerobic fluidized bed membrane bioreactors. Environmental Science: Water Research and Technology, 2016, 2, 1041-1048.	2.4	6
507	Improving microbial electrolysis stability using flow-through brush electrodes and monitoring anode potentials relative to thermodynamic minima. International Journal of Hydrogen Energy, 2021, 46, 9514-9522.	7.1	6
508	Enhanced recalcitrant pollutant degradation using hydroxyl radicals generated using ozone and bioelectricity-driven cathodic hydrogen peroxide production: Bio-E-Peroxone process. Science of the Total Environment, 2021, 776, 144819.	8.0	6
509	A Simplified Headspace Biochemical Oxygen Demand Test Protocol Based on Oxygen Measurements Using a Fiber Optic Probe. Water Environment Research, 2004, 76, 29-36.	2.7	5
510	Ending Our Hydrogen and Ammonia Addiction to Fossil Fuels. Environmental Science and Technology Letters, 2019, 6, 257-258.	8.7	5
511	Closure to "Oxygen Transfer in Trickling Filters―by Bruce E. Logan. Journal of Environmental Engineering, ASCE, 1995, 121, 423-426.	1.4	4
512	Time Travel. Environmental Science and Technology Letters, 2014, 1, 1-1.	8.7	4
513	Generating electricity from wastewater treatment. Water Environment Research, 2005, 77, 211.	2.7	4
514	Comment on "Investigation of a Sequential Filtration Technique for Particle Fractionation". Environmental Science & Technology, 1995, 29, 2166-2167.	10.0	3
515	Comments on "Electricity generation by Enterobacter cloacae SU-1 in mediator less microbial fuel cell―by Samrot etÂal., Int.ÂJ. Hydrogen Energy, 35 (15) 2010, 7723–7729. International Journal of Hydrogen Energy, 2011, 36, 9396-9397.	7.1	3
516	Reducing nitrogen crossover in microbial reverse-electrodialysis cells by using adjacent anion exchange membranes and anion exchange resin. Environmental Science: Water Research and Technology, 2015, 1, 865-873.	2.4	3
517	Ten Activities That Demonstrate You Are Not Thinking about the Future. Environmental Science and Technology Letters, 2017, 4, 323-324.	8.7	3
518	A mathematical model simulating fish losses near power plants using rotenone data. Water Research, 1980, 14, 1047-1053.	11.3	2
519	Oxygen Mass-Transfer Coefficients for Different Sample Containers Used in the Headspace Biochemical Oxygen Demand Test. Water Environment Research, 2001, 73, 58-62.	2.7	2
520	ELECTRICITY FROM DOMESTIC WASTEWATER CAN BE HARVESTED IN MICROBIAL FUEL CELLS. Proceedings of the Water Environment Federation, 2004, 2004, 581-585.	0.0	2
521	Comment on: "Electricity generation by Enterobacter cloacae SU-1 in mediator less microbial fuel cell―by Samrot etÂal International Journal of Hydrogen Energy, 2010, 35, 10635-10635.	7.1	2
522	Get Personal: The Author Impact Factor. Environmental Science and Technology Letters, 2018, 5, 1-2.	8.7	2

#	Article	IF	CITATIONS
523	Let the Sunshine In. Environmental Science and Technology Letters, 2019, 6, 511-512.	8.7	2
524	Application of the penetration theory to oxygen transfer to biofilms. Biotechnology and Bioengineering, 1987, 29, 762-766.	3.3	1
525	Using Microbial Electrolysis Cells (MECs) for Wastewater Treatment. Proceedings of the Water Environment Federation, 2009, 2009, 536-541.	0.0	1
526	Food and Light Bulbs. Environmental Science and Technology Letters, 2014, 1, 442-442.	8.7	1
527	I Owe, I Owe, so Off To Review I Go. Environmental Science and Technology Letters, 2014, 1, 248-248.	8.7	1
528	Dam It, More Power Scotty!. Environmental Science and Technology Letters, 2016, 3, 310-310.	8.7	1
529	Waste Not, Want It. Environmental Science and Technology Letters, 2018, 5, 301-301.	8.7	1
530	Energy Literacy Begins with Units That Make Sense: The Daily Energy Unit D. Environmental Science and Technology Letters, 2019, 6, 686-687.	8.7	1
531	Effect of bacterial heterogeneity on adhesion to uniform collectors by monoclonal populations. FEMS Microbiology Letters, 1994, 124, 321-326.	1.8	1
532	HYDROGEN PRODUCTION USING ANAEROBIC WASTEWATER TREATMENT PROCESSES. Proceedings of the Water Environment Federation, 2002, 2002, 842-848.	0.0	0
533	MICROBIAL POWER: ELECTRICITY GENERATION FROM DOMESTIC AND AGRICULTURAL WASTEWATERS USING MICROBIAL FUEL CELLS. Proceedings of the Water Environment Federation, 2005, 2005, 93-99.	0.0	0
534	New Electrode Materials for Microbial Fuel Cells Used to Generate Electricity from Wastewaters. Proceedings of the Water Environment Federation, 2008, 2008, 1566-1570.	0.0	0
535	Response to "Comment on Extracellular Palladium Nanoparticle Production Using <i>Geobacter sulfurreducens</i> ― ACS Sustainable Chemistry and Engineering, 2013, 1, 1346-1347.	6.7	0
536	Climbing Those Peaks. Environmental Science and Technology Letters, 2014, 1, 197-197.	8.7	0
537	Taking the Bite Out of Overhead Rates. Environmental Science and Technology Letters, 2015, 2, 204-205.	8.7	0
538	Environmental Science & Technology Letters Presents the 2015 Excellence in Review Awards. Environmental Science and Technology Letters, 2015, 2, 302-302.	8.7	0
539	Japan Reaches Goal of Zero Reliance on Fossil and Nuclear Fuels. Environmental Science and Technology Letters, 2015, 2, 1-1.	8.7	0
540	Research Goals, Not Milestones. Environmental Science and Technology Letters, 2015, 2, 138-138.	8.7	0

#	Article	IF	CITATIONS
541	The Best of the Best in 2015!. Environmental Science and Technology Letters, 2016, 3, 110-111.	8.7	Ο
542	High-Performance Carbon Aerogel Air Cathodes for Microbial Fuel Cells. ChemSusChem, 2016, 9, 2718-2718.	6.8	0
543	Relative Impact Factors. Environmental Science and Technology Letters, 2016, 3, 255-256.	8.7	0
544	What Does Cheap Oil Mean for Climate Change?. Environmental Science and Technology Letters, 2016, 3, 41-41.	8.7	0
545	Two Journals Sharing One Name. Environmental Science and Technology Letters, 2017, 4, 83-84.	8.7	0
546	The Best of the Best in 2016!. Environmental Science and Technology Letters, 2017, 4, 125-126.	8.7	0
547	Awards for the Best Papers in ES&T Letters in 2017!. Environmental Science and Technology Letters, 2018, 5, 194-195.	8.7	0
548	The Oil Industry Needs Your Help To Protect It from Climate Change. Environmental Science and Technology Letters, 2018, 5, 707-707.	8.7	0
549	<i>Environmental Science & amp; Technology Letters</i> Presents the 2018 Excellence in Review Awards. Environmental Science and Technology Letters, 2018, 5, 621-621.	8.7	0
550	Editor's Choice for the Best Papers Published in ES&T Letters in 2018. Environmental Science and Technology Letters, 2019, 6, 197-198.	8.7	0
551	<i>Environmental Science & amp; Technology Letters</i> Presents the 2019 Excellence in Review Awards. Environmental Science and Technology Letters, 2019, 6, 637-637.	8.7	0
552	C, You, and Farewell. Environmental Science and Technology Letters, 2020, 7, 126-127.	8.7	0
553	Using Atomic Force Microscopy To Study Factors Affecting Bioadhesion At Molecular To Nanoscale Levels. , 2004, , 339-350.		Ο
554	A Fully Regenerable Thermal Silver Ammonia Battery to Convert Low-Grade Waste Heat to Electricity. ECS Meeting Abstracts, 2017, , .	0.0	0
555	High Electrical Power Densities from Salinity Gradients By Combining Electrode and Donnan Potentials in a Single Electrochemical Cell. ECS Meeting Abstracts, 2017, , .	0.0	Ο
556	Integrating Reverse-Electrodialysis Stacks with Flow Batteries to Achieve Improved Energy Recovery from Salinity Gradients and Energy Storage. ECS Meeting Abstracts, 2017, , .	0.0	0
557	Water Desalination By Pseudocapacitive Deionization. ECS Meeting Abstracts, 2017, , .	0.0	0
558	Thermodynamics and Electrochemistry of Thermally Regenerative Ammonia Batteries. ECS Meeting Abstracts, 2020, MA2020-01, 94-94.	0.0	0

#	Article	IF	CITATIONS
559	A Numerical Investigation into the Relationship between Fluid Flow and Electrodeposition in a Silver Thermally Regenerative Ammonia Battery. ECS Meeting Abstracts, 2020, MA2020-01, 579-579.	0.0	0
560	Energy diversity brings stability. Environmental Science & amp; Technology, 2006, 40, 5161.	10.0	0