
Roberto J Brea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11865929/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid and Sequential Dual Oxime Ligation Enables De Novo Formation of Functional Synthetic Membranes from Waterâ€6oluble Precursors. Angewandte Chemie - International Edition, 2022, 61, .	13.8	4
2	Chemoenzymatic Generation of Phospholipid Membranes Mediated by Type I Fatty Acid Synthase. Journal of the American Chemical Society, 2021, 143, 8533-8537.	13.7	13
3	Expression of Fatty Acyl-CoA Ligase Drives One-Pot <i>De Novo</i> Synthesis of Membrane-Bound Vesicles in a Cell-Free Transcription-Translation System. Journal of the American Chemical Society, 2021, 143, 11235-11242.	13.7	10
4	Supramolecular Assembly and Mesophase Behavior of Glycopyranose-Derived Single-Chain Amphiphiles. ACS Symposium Series, 2020, , 15-30.	0.5	0
5	Traceless native chemical ligation of lipid-modified peptide surfactants by mixed micelle formation. Nature Communications, 2020, 11, 2793.	12.8	10
6	Lipids: chemical tools for their synthesis, modification, and analysis. Chemical Society Reviews, 2020, 49, 4602-4614.	38.1	54
7	Temperature-Dependent Reversible Morphological Transformations in N-Oleoyl β-d-Galactopyranosylamine. Journal of Physical Chemistry B, 2020, 124, 5426-5433.	2.6	1
8	Single-Chain β- <scp>d</scp> -Glycopyranosylamides of Unsaturated Fatty Acids: Self-Assembly Properties and Applications to Artificial Cell Development. Journal of Physical Chemistry B, 2019, 123, 3711-3720.	2.6	20
9	A minimal biochemical route towards de novo formation of synthetic phospholipid membranes. Nature Communications, 2019, 10, 300.	12.8	82
10	In Situ Lipid Membrane Formation Triggered by Intramolecular Photoinduced Electron Transfer. Langmuir, 2018, 34, 750-755.	3.5	10
11	Highly Stable Artificial Cells from Galactopyranose-Derived Single-Chain Amphiphiles. Journal of the American Chemical Society, 2018, 140, 17356-17360.	13.7	23
12	Amphiphile-Mediated Depalmitoylation of Proteins in Living Cells. Journal of the American Chemical Society, 2018, 140, 17374-17378.	13.7	14
13	Biomimetic Generation and Remodeling of Phospholipid Membranes by Dynamic Imine Chemistry. Journal of the American Chemical Society, 2018, 140, 8388-8391.	13.7	40
14	In Situ Reconstitution of the Adenosine A2A Receptor in Spontaneously Formed Synthetic Liposomes. Journal of the American Chemical Society, 2017, 139, 3607-3610.	13.7	34
15	<i>De novo</i> vesicle formation and growth: an integrative approach to artificial cells. Chemical Science, 2017, 8, 7912-7922.	7.4	44
16	Nonenzymatic biomimetic remodeling of phospholipids in synthetic liposomes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8589-8594.	7.1	45
17	Spontaneous Reconstitution of Functional Transmembrane Proteins During Bioorthogonal Phospholipid Membrane Synthesis. Angewandte Chemie - International Edition, 2015, 54, 12738-12742.	13.8	30
18	Towards Selfâ€Assembled Hybrid Artificial Cells: Novel Bottomâ€Up Approaches to Functional Synthetic Membranes. Chemistry - A European Journal, 2015, 21, 12564-12570.	3.3	40

Roberto J Brea

#	Article	IF	CITATIONS
19	In Situ Vesicle Formation by Native Chemical Ligation. Angewandte Chemie - International Edition, 2014, 53, 14102-14105.	13.8	64
20	Self-assembling properties of all γ-cyclic peptides containing sugar amino acid residues. Organic and Biomolecular Chemistry, 2012, 10, 8762.	2.8	23
21	Highly Efficient and Directional Homo―and Heterodimeric Energy Transfer Materials Based on Fluorescently Derivatized α,γ yclic Octapeptides. Chemistry - an Asian Journal, 2011, 6, 110-121.	3.3	21
22	Regioisomeric Control Induced by DABCO Coordination to Rotatable Selfâ€Assembled Bis―and Tetraporphyrin α,γâ€Cyclic Octapeptide Dimers. Chemistry - A European Journal, 2011, 17, 1220-1229.	3.3	27
23	Towards functional bionanomaterials based on self-assembling cyclic peptidenanotubes. Chemical Society Reviews, 2010, 39, 1448-1456.	38.1	246
24	α,γ-Peptide Nanotube Templating of One-Dimensional Parallel Fullerene Arrangements. Journal of the American Chemical Society, 2009, 131, 11335-11337.	13.7	81
25	Electron transfer in Me-blocked heterodimeric Â,Â-peptide nanotubular donor-acceptor hybrids. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5291-5294.	7.1	56
26	Controlling Multiple Fluorescent Signal Output in Cyclic Peptide-Based Supramolecular Systems. Journal of the American Chemical Society, 2007, 129, 1653-1657.	13.7	65
27	Large-diameter self-assembled dimers of α,γ-cyclic peptides, with the nanotubular solid-state structure of cyclo-[(l-Leu-d-MeN-γ-Acp)4-]·4CHCl2COOH. Chemical Communications, 2007, , 3267.	4.1	69
28	Synthesis of ω-(Hetero)arylalkynylated α-Amino Acid by Sonogashira-Type Reactions in Aqueous Media. Journal of Organic Chemistry, 2006, 71, 7870-7873.	3.2	30
29	Methyl-Blocked Dimeric α,γ-Peptide Nanotube Segments: Formation of a Peptide Heterodimer through Backbone-Backbone Interactions. Angewandte Chemie - International Edition, 2005, 44, 5710-5713.	13.8	69
30	The Smallest α,γ-Peptide Nanotubulet Segments:  Cyclic α,γ-Tetrapeptide Dimers. Organic Letters, 2005, 7, 4681-4684.	4.6	37
31	Rapid and Sequential Dual Oxime Ligation Enables De Novo Formation of Functional Synthetic Membranes from Waterâ€Soluble Precursors. Angewandte Chemie, 0, , .	2.0	0