
Stephane Canaan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1186506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Serological biomarkers for the diagnosis of Mycobacterium abscessus infections in cystic fibrosis patients. Journal of Cystic Fibrosis, 2022, 21, 353-360.	0.7	6
2	Identification of cell wall synthesis inhibitors active against Mycobacterium tuberculosis by competitive activity-based protein profiling. Cell Chemical Biology, 2022, 29, 883-896.e5.	5.2	20
3	Early life oxytocin treatment improves thermo-sensory reactivity and maternal behavior in neonates lacking the autism-associated gene Magel2. Neuropsychopharmacology, 2022, 47, 1901-1912.	5.4	9
4	Design, synthesis and antibacterial activity against pathogenic mycobacteria of conjugated hydroxamic acids, hydrazides and O-alkyl/O-acyl protected hydroxamic derivatives. Bioorganic and Medicinal Chemistry Letters, 2022, 64, 128692.	2.2	6
5	Deciphering the physiological role of serine enzymes involved in mycobacterial lipid metabolism using activity-based protein profiling. , 2022, , 235-251.		Ο
6	Lipolytic enzymes inhibitors: A new way for antibacterial drugs discovery. European Journal of Medicinal Chemistry, 2021, 209, 112908.	5.5	7
7	Transcriptional adaptation of <i>Mycobacterium ulcerans</i> in an original mouse model: New insights into the regulation of mycolactone. Virulence, 2021, 12, 1438-1451.	4.4	7
8	Intrabacterial lipid inclusions in mycobacteria: unexpected key players in survival and pathogenesis?. FEMS Microbiology Reviews, 2021, 45, .	8.6	13
9	Methyl arachidonyl fluorophosphonate inhibits <i>MycobacteriumÂtuberculosis</i> thioesterase TesA and globally affects vancomycin susceptibility. FEBS Letters, 2020, 594, 79-93.	2.8	7
10	A TLR2-Activating Fraction From Mycobacterium abscessus Rough Variant Demonstrates Vaccine and Diagnostic Potential. Frontiers in Cellular and Infection Microbiology, 2020, 10, 432.	3.9	10
11	Dissecting the antibacterial activity of oxadiazolone-core derivatives against Mycobacterium abscessus. PLoS ONE, 2020, 15, e0238178.	2.5	10
12	Structural basis for loading and inhibition of a bacterial T6 <scp>SS</scp> phospholipase effector by the VgrG spike. EMBO Journal, 2020, 39, e104129.	7.8	31
13	Cyclipostins and Cyclophostin Analogues as Multitarget Inhibitors That Impair Growth of <i>Mycobacterium abscessus</i> . ACS Infectious Diseases, 2019, 5, 1597-1608.	3.8	30
14	Worms' Antimicrobial Peptides. Marine Drugs, 2019, 17, 512.	4.6	24
15	Nitrogen deprivation induces triacylglycerol accumulation, drug tolerance and hypervirulence in mycobacteria. Scientific Reports, 2019, 9, 8667.	3.3	31
16	Dissecting the membrane lipid binding properties and lipase activity ofMycobacteriumÂtuberculosisLipY domains. FEBS Journal, 2019, 286, 3164-3181.	4.7	14
17	Synthesis of Longâ€Chain Î²â€Łactones and Their Antibacterial Activities against Pathogenic Mycobacteria. ChemMedChem, 2019, 14, 349-358.	3.2	10
18	Haloarcula sebkhae sp. nov., an extremely halophilic archaeon from Algerian hypersaline environment. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 732-738.	1.7	10

#	Article	IF	CITATIONS
19	Cyclophostin and Cyclipostins analogues, new promising molecules to treat mycobacterial-related diseases. International Journal of Antimicrobial Agents, 2018, 51, 651-654.	2.5	25
20	Cyclipostins and cyclophostin analogs inhibit the antigen 85C from Mycobacterium tuberculosis both in vitro and in vivo. Journal of Biological Chemistry, 2018, 293, 2755-2769.	3.4	37
21	LipG a bifunctional phospholipase/thioesterase involved in mycobacterial envelope remodeling. Bioscience Reports, 2018, 38, .	2.4	24
22	Biochemical and Structural Characterization of TesA, a Major Thioesterase Required for Outer-Envelope Lipid Biosynthesis in Mycobacterium tuberculosis. Journal of Molecular Biology, 2018, 430, 5120-5136.	4.2	22
23	B cells response directed against Cut4 and CFP21 lipolytic enzymes in active and latent tuberculosis infections. PLoS ONE, 2018, 13, e0196470.	2.5	4
24	Oxadiazolone derivatives, new promising multi-target inhibitors against M. tuberculosis. Bioorganic Chemistry, 2018, 81, 414-424.	4.1	20
25	Delineating the Physiological Roles of the PE and Catalytic Domains of LipY in Lipid Consumption in Mycobacterium-Infected Foamy Macrophages. Infection and Immunity, 2018, 86, .	2.2	24
26	Lipid Droplets Breakdown: Adipose Triglyceride Lipase Leads the Way. Current Protein and Peptide Science, 2018, 19, 1131-1133.	1.4	3
27	The potent effect of mycolactone on lipid membranes. PLoS Pathogens, 2018, 14, e1006814.	4.7	36
28	Scrutiny of Mycobacterium tuberculosis 19 kDa antigen proteoforms provides new insights in the lipoglycoprotein biogenesis paradigm. Scientific Reports, 2017, 7, 43682.	3.3	27
29	Cyclipostins and Cyclophostin analogs as promising compounds in the fight against tuberculosis. Scientific Reports, 2017, 7, 11751.	3.3	40
30	Mycobacterium canettii Infection of Adipose Tissues. Frontiers in Cellular and Infection Microbiology, 2017, 7, 189.	3.9	17
31	Experimental Models of Foamy Macrophages and Approaches for Dissecting the Mechanisms of Lipid Accumulation and Consumption during Dormancy and Reactivation of Tuberculosis. Frontiers in Cellular and Infection Microbiology, 2016, 6, 122.	3.9	68
32	Lysosomal Lipases PLRP2 and LPLA2 Process Mycobacterial Multi-acylated Lipids and Generate T Cell Stimulatory Antigens. Cell Chemical Biology, 2016, 23, 1147-1156.	5.2	32
33	A phospholipase A ₁ antibacterial Type VI secretion effector interacts directly with the Câ€ŧerminal domain of the VgrG spike protein for delivery. Molecular Microbiology, 2016, 99, 1099-1118.	2.5	179
34	New lipase assay using Pomegranate oil coating in microtiter plates. Biochimie, 2016, 120, 110-118.	2.6	11
35	Experimental Evolution of Mycobacterium tuberculosis in Human Macrophages Results in Low-Frequency Mutations Not Associated with Selective Advantage. PLoS ONE, 2016, 11, e0167989.	2.5	6
36	Bacterial phospholipases C as vaccine candidate antigens against cystic fibrosis respiratory pathogens: The Mycobacterium abscessus model. Vaccine, 2015, 33, 2118-2124.	3.8	38

#	Article	IF	CITATIONS
37	Mycobacterium abscessus Phospholipase C Expression Is Induced during Coculture within Amoebae and Enhances M. abscessus Virulence in Mice. Infection and Immunity, 2015, 83, 780-791.	2.2	54
38	Smooth Tubercle Bacilli: Neglected Opportunistic Tropical Pathogens. Frontiers in Public Health, 2015, 3, 283.	2.7	24
39	Supported inhibitor for fishing lipases in complex biological media and mass spectrometry identification. Biochimie, 2014, 107, 124-134.	2.6	2
40	Reversible Lipid Accumulation and Associated Division Arrest of Mycobacterium avium in Lipoprotein-Induced Foamy Macrophages May Resemble Key Events during Latency and Reactivation of Tuberculosis. Infection and Immunity, 2014, 82, 476-490.	2.2	109
41	Enantioselective Inhibition of Microbial Lipolytic Enzymes by Nonracemic Monocyclic Enolphosphonate Analogues of Cyclophostin. Journal of Medicinal Chemistry, 2013, 56, 4393-4401.	6.4	18
42	Mycobacterial lipolytic enzymes: A gold mine for tuberculosis research. Biochimie, 2013, 95, 66-73.	2.6	59
43	Identification of Residues Involved in Substrate Specificity and Cytotoxicity of Two Closely Related Cutinases from Mycobacterium tuberculosis. PLoS ONE, 2013, 8, e66913.	2.5	14
44	LipC (Rv0220) Is an Immunogenic Cell Surface Esterase of Mycobacterium tuberculosis. Infection and Immunity, 2012, 80, 243-253.	2.2	47
45	Synthesis and Kinetic Evaluation of Cyclophostin and Cyclipostins Phosphonate Analogs As Selective and Potent Inhibitors of Microbial Lipases. Journal of Medicinal Chemistry, 2012, 55, 10204-10219.	6.4	45
46	Analysis of the discriminative inhibition of mammalian digestive lipases by 3-phenyl substituted 1,3,4-oxadiazol-2(3H)-ones. European Journal of Medicinal Chemistry, 2012, 58, 452-463.	5.5	53
47	MmPPOX Inhibits Mycobacterium tuberculosis Lipolytic Enzymes Belonging to the Hormone-Sensitive Lipase Family and Alters Mycobacterial Growth. PLoS ONE, 2012, 7, e46493.	2.5	50
48	Identification of putative residues involved in the accessibility of the substrate-binding site of lipoxygenase by site-directed mutagenesis studies. Archives of Biochemistry and Biophysics, 2011, 509, 82-89.	3.0	14
49	Watching intracellular lipolysis in mycobacteria using time lapse fluorescence microscopy. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 234-241.	2.4	30
50	Effects of Surfactants on Lipase Structure, Activity, and Inhibition. Pharmaceutical Research, 2011, 28, 1831-1842.	3.5	147
51	Mycobacterium tuberculosis Lipolytic Enzymes as Potential Biomarkers for the Diagnosis of Active Tuberculosis. PLoS ONE, 2011, 6, e25078.	2.5	51
52	A Monoacylglycerol Lipase from <i>Mycobacterium smegmatis</i> Involved in Bacterial Cell Interaction. Journal of Bacteriology, 2010, 192, 4776-4785.	2.2	44
53	Two cutinaseâ€like proteins secreted by <i>Mycobacterium tuberculosis</i> show very different lipolytic activities reflecting their physiological function. FASEB Journal, 2010, 24, 1893-1903.	0.5	65
54	A lipoxygenase with dual positional specificity is expressed in olives (Olea europaea L.) during ripening. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 339-346.	2.4	37

#	Article	IF	CITATIONS
55	First evidence for the salt-dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 719-729.	2.4	87
56	High-throughput automated refolding screening of inclusion bodies. Protein Science, 2009, 13, 2782-2792.	7.6	134
57	A genomic search approach to identify esterases in Propionibacterium freudenreichii involved in the formation of flavour in Emmental cheese. Microbial Cell Factories, 2008, 7, 16.	4.0	28
58	Green fluorescent protein and factorial approach: An effective partnership for screening the soluble expression of recombinant proteins in Escherichia coli. Protein Expression and Purification, 2008, 61, 184-190.	1.3	9
59	Gene Overexpression and Biochemical Characterization of the Biotechnologically Relevant Chlorogenic Acid Hydrolase from <i>Aspergillus niger</i> . Applied and Environmental Microbiology, 2007, 73, 5624-5632.	3.1	32
60	Characterization of an exported monoglyceride lipase from <i>Mycobacterium tuberculosis</i> possibly involved in the metabolism of host cell membrane lipids. Biochemical Journal, 2007, 408, 417-427.	3.7	82
61	Neurotoxicity and Other Pharmacological Activities of the Snake Venom Phospholipase A2 OS2:  The N-Terminal Region Is More Important Than Enzymatic Activity. Biochemistry, 2006, 45, 5800-5816.	2.5	63
62	LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis. EMBO Journal, 2006, 25, 1436-1444.	7.8	126
63	Automated expression and solubility screening of His-tagged proteins in 96-well format. Analytical Biochemistry, 2005, 346, 77-84.	2.4	65
64	Substrate specificity and kinetic properties of enzymes belonging to the hormone-sensitive lipase family: Comparison with non-lipolytic and lipolytic carboxylesterases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1738, 29-36.	2.4	46
65	Crystal structure of the conserved hypothetical protein Rv1155 fromMycobacterium tuberculosis. FEBS Letters, 2005, 579, 215-221.	2.8	25
66	Interfacial Enzymology of Parvovirus Phospholipases A2. Journal of Biological Chemistry, 2004, 279, 14502-14508.	3.4	98
67	Expression and characterization of the protein Rv1399c from Mycobacterium tuberculosis. FEBS Journal, 2004, 271, 3953-3961.	0.2	61
68	Comparing continuous wave progressive saturation EPR and time domain saturation recovery EPR over the entire motional range of nitroxide spin labels. Journal of Magnetic Resonance, 2004, 169, 129-163.	2.1	33
69	Medium-Scale Structural Genomics:  Strategies for Protein Expression and Crystallization. Accounts of Chemical Research, 2003, 36, 165-172.	15.6	116
70	Inhibition of Dog and Human Gastric Lipases by Enantiomeric Phosphonate Inhibitors:Â A Structureâ^'Activity Study. Biochemistry, 2003, 42, 11587-11593.	2.5	18
71	Unusual Mode of Binding of Human Group IIA Secreted Phospholipase A2 to Anionic Interfaces as Studied by Continuous Wave and Time Domain Electron Paramagnetic Resonance Spectroscopy. Journal of Biological Chemistry, 2002, 277, 30984-30990.	3.4	49
72	Functional Interaction of Calcium-/Calmodulin-dependent Protein Kinase II and Cytosolic Phospholipase A2. Journal of Biological Chemistry, 2001, 276, 39653-39660.	3.4	87

#	Article	IF	CITATIONS
73	Digestive lipases: From three-dimensional structure to physiology. Biochimie, 2000, 82, 973-986.	2.6	104
74	Crystal Structure of Human Gastric Lipase and Model of Lysosomal Acid Lipase, Two Lipolytic Enzymes of Medical Interest. Journal of Biological Chemistry, 1999, 274, 16995-17002.	3.4	150
75	Site-directed removal of N-glycosylation sites in human gastric lipase. FEBS Journal, 1999, 262, 644-651.	0.2	33
76	Gastric lipase: crystal structure and activity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1441, 197-204.	2.4	21
77	Purification and Interfacial Behavior of Recombinant Human Gastric Lipase Produced from Insect Cells in a Bioreactor. Protein Expression and Purification, 1998, 14, 23-30.	1.3	31
78	[15] Influence of various signal peptides on secretion of mammalian acidic lipases in baculovirus-insect cell system. Methods in Enzymology, 1997, 284, 261-272.	1.0	8