Lila Kari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11862630/publications.pdf

Version: 2024-02-01

114 papers	2,663 citations	20 h-index	276875 41 g-index
128	128	128	2413
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	DeLUCS: Deep learning for unsupervised clustering of DNA sequences. PLoS ONE, 2022, 17, e0261531.	2.5	21
2	SomaticSiMu: a mutational signature simulator. Bioinformatics, 2022, 38, 2619-2620.	4.1	0
3	Descriptional Complexity of Semi-Simple Splicing Systems. International Journal of Foundations of Computer Science, 2021, 32, 685-711.	1.1	1
4	Conjugate word blending: formal model and experimental implementation by XPCR. Natural Computing, 2021, 20, 647-658.	3.0	0
5	MLDSP-GUI: an alignment-free standalone tool with an interactive graphical user interface for DNA sequence comparison and analysis. Bioinformatics, 2020, 36, 2258-2259.	4.1	19
6	Machine learning using intrinsic genomic signatures for rapid classification of novel pathogens: COVID-19 case study. PLoS ONE, 2020, 15, e0232391.	2.5	761
7	State Complexity of Overlap Assembly. International Journal of Foundations of Computer Science, 2020, 31, 1113-1132.	1.1	О
8	ML-DSP: Machine Learning with Digital Signal Processing for ultrafast, accurate, and scalable genome classification at all taxonomic levels. BMC Genomics, 2019, 20, 267.	2.8	42
9	Simplifying the role of signals in tile self-assembly. Natural Computing, 2019, 18, 383-401.	3.0	О
10	State Complexity of Simple Splicing. Lecture Notes in Computer Science, 2019, , 197-209.	1.3	2
11	State Complexity of Pseudocatenation. Lecture Notes in Computer Science, 2019, , 203-214.	1.3	O
12	Transducer descriptions of DNA code properties and undecidability of antimorphic problems. Information and Computation, 2018, 259, 237-258.	0.7	1
13	Efficient Algorithms for Computing the Inner Edit Distance of a Regular Language via Transducers. Algorithms, 2018, 11, 165.	2.1	0
14	An open-source k-mer based machine learning tool for fast and accurate subtyping of HIV-1 genomes. PLoS ONE, 2018, 13, e0206409.	2.5	70
15	Word Blending in Formal Languages: The Brangelina Effect. Lecture Notes in Computer Science, 2018, , 72-85.	1.3	2
16	State Complexity of Overlap Assembly. Lecture Notes in Computer Science, 2018, , 109-120.	1.3	5
17	Disjunctivity and other properties of sets of pseudo-bordered words. Acta Informatica, 2017, 54, 379-398.	0.5	2
18	On the overlap assembly of strings and languages. Natural Computing, 2017, 16, 175-185.	3.0	13

#	Article	IF	Citations
19	Binary Pattern Tile Set Synthesis Is NP-Hard. Algorithmica, 2017, 78, 1-46.	1.3	4
20	MoDMaps3D: an interactive webtool for the quantification and 3D visualization of interrelationships in a dataset of DNA sequences. Bioinformatics, 2017, 33, 3091-3093.	4.1	7
21	Further remarks on DNA overlap assembly. Information and Computation, 2017, 253, 143-154.	0.7	10
22	Smart Tile Self-Assembly and Replication. Fundamenta Informaticae, 2017, 154, 239-260.	0.4	0
23	Additive methods for genomic signatures. BMC Bioinformatics, 2016, 17, 313.	2.6	19
24	Mapping the Space of Genomic Signatures. PLoS ONE, 2015, 10, e0119815.	2.5	30
25	An investigation into inter- and intragenomic variations of graphic genomic signatures. BMC Bioinformatics, 2015, 16, 246.	2.6	23
26	A Formal Language Model of DNA Polymerase Enzymatic Activity. Fundamenta Informaticae, 2015, 138, 179-192.	0.4	8
27	3-color bounded patterned self-assembly. Natural Computing, 2015, 14, 279-292.	3.0	3
28	Transducer Descriptions of DNA Code Properties and Undecidability of Antimorphic Problems. Lecture Notes in Computer Science, 2015, , 141-152.	1.3	3
29	Binary Pattern Tile Set Synthesis Is NP-hard. Lecture Notes in Computer Science, 2015, , 1022-1034.	1.3	7
30	HYPERGRAPH AUTOMATA: A THEORETICAL MODEL FOR PATTERNED SELF-ASSEMBLY. International Journal of Foundations of Computer Science, 2014, 25, 419-439.	1.1	1
31	On the maximality of languages with combined types of code properties. Theoretical Computer Science, 2014, 550, 79-89.	0.9	5
32	State complexity of star of union and square of union on k regular languages. Theoretical Computer Science, 2013, 499, 38-50.	0.9	5
33	Negative Interactions in Irreversible Self-assembly. Algorithmica, 2013, 66, 153-172.	1.3	26
34	3-Color Bounded Patterned Self-assembly. Lecture Notes in Computer Science, 2013, , 105-117.	1.3	6
35	STATE COMPLEXITY OF TWO COMBINED OPERATIONS: CATENATION-STAR AND CATENATION-REVERSAL. International Journal of Foundations of Computer Science, 2012, 23, 51-66.	1.1	10
36	DE BRUIJN SEQUENCES REVISITED. International Journal of Foundations of Computer Science, 2012, 23, 1307-1321.	1.1	4

#	Article	IF	CITATIONS
37	Pseudopower Avoidance. Fundamenta Informaticae, 2012, 114, 55-72.	0.4	8
38	DNA Computing — Foundations and Implications. , 2012, , 1073-1127. State complexity of union and intersection of square and reversal on <mmkmath <="" altimg="sil.gif" td=""><td></td><td>13</td></mmkmath>		13
39	display="inline" overflow="scroll" xmlns:xocs="http://www.eisevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mell="http://www.w3.org/1998/Math/MathML"	0.9	5
40	One-reversal counter machines and multihead automata: Revisited. Theoretical Computer Science, 2012, 454, 81-87.	0.9	13
41	State complexity of combined operations with two basic operations. Theoretical Computer Science, 2012, 437, 82-102.	0.9	18
42	Iterated Hairpin Completions of Non-crossing Words. Lecture Notes in Computer Science, 2012, , 337-348.	1.3	3
43	K-Comma Codes and Their Generalizations. Fundamenta Informaticae, 2011, 107, 1-18.	0.4	13
44	On the Regularity of Iterated Hairpin Completion of a Single Word. Fundamenta Informaticae, 2011, 110, 201-215.	0.4	3
45	Polyominoes simulating arbitrary-neighborhood zippers and tilings. Theoretical Computer Science, 2011, 412, 6083-6100.	0.9	0
46	An extension of the Lyndonâ \in "Schýtzenberger result to pseudoperiodic words. Information and Computation, 2011, 209, 717-730.	0.7	9
47	Towards a neighborhood simplification of tile systems: From Moore to quasi-linear dependencies. Natural Computing, 2011, 10, 103-117.	3.0	1
48	SCHEMA FOR PARALLEL INSERTION AND DELETION: REVISITED. International Journal of Foundations of Computer Science, 2011, 22, 1655-1668.	1.1	5
49	STATE COMPLEXITY OF TWO COMBINED OPERATIONS: CATENATION-UNION AND CATENATION-INTERSECTION. International Journal of Foundations of Computer Science, 2011, 22, 1797-1812.	1.1	13
50	PROPERTIES OF PSEUDO-PRIMITIVE WORDS AND THEIR APPLICATIONS. International Journal of Foundations of Computer Science, 2011, 22, 447-471.	1.1	11
51	ORTHOGONAL SHUFFLE ON TRAJECTORIES. International Journal of Foundations of Computer Science, 2011, 22, 213-222.	1.1	1
52	Negative Interactions in Irreversible Self-assembly. Lecture Notes in Computer Science, 2011, , 37-48.	1.3	13
53	On a special class of primitive words. Theoretical Computer Science, 2010, 411, 617-630.	0.9	28
54	Watson–Crick palindromes in DNA computing. Natural Computing, 2010, 9, 297-316.	3.0	40

#	Article	IF	Citations
55	An Improved Bound for an Extension of Fine and Wilf's Theorem and Its Optimality. Fundamenta Informaticae, 2010, 101, 215-236.	0.4	6
56	Pseudo-power Avoidance. Lecture Notes in Computer Science, 2010, , 432-433.	1.3	0
57	Schema for Parallel Insertion and Deletion. Lecture Notes in Computer Science, 2010, , 267-278.	1.3	4
58	Geometrical tile design for complex neighborhoods. Frontiers in Computational Neuroscience, 2009, 3, 20.	2.1	1
59	Twin-roots of words and their properties. Theoretical Computer Science, 2009, 410, 2393-2400.	0.9	3
60	On pseudoknot-bordered words and their properties. Journal of Computer and System Sciences, 2009, 75, 113-121.	1.2	10
61	The Undecidability of the Infinite Ribbon Problem: Implications for Computing by Self-Assembly. SIAM Journal on Computing, 2009, 38, 2356-2381.	1.0	19
62	On the Reversibility of Parallel Insertion, and Its Relation to Comma Codes. Lecture Notes in Computer Science, 2009, , 204-219.	1.3	1
63	Towards the Sequence Design Preventing Pseudoknot Formation. Proceedings in Information and Communications Technology, 2009, , 101-110.	0.2	0
64	On the weight of universal insertion grammars. Theoretical Computer Science, 2008, 396, 264-270.	0.9	15
65	The many facets of natural computing. Communications of the ACM, 2008, 51, 72-83.	4.5	166
66	WATSON-CRICK BORDERED WORDS AND THEIR SYNTACTIC MONOID. International Journal of Foundations of Computer Science, 2008, 19, 1163-1179.	1.1	6
67	INVOLUTIVELY BORDERED WORDS. International Journal of Foundations of Computer Science, 2007, 18, 1089-1106.	1.1	17
68	$\mbox{k-involution}$ codes and related sets. Journal of Discrete Mathematical Sciences and Cryptography, 2007, 10, 485-503.	0.8	1
69	The syntactic monoid of hairpin-free languages. Acta Informatica, 2007, 44, 153-166.	0.5	10
70	Watson-Crick Conjugate and Commutative Words. , 2007, , 273-283.		21
71	Hairpin Structures in DNA Words. Lecture Notes in Computer Science, 2006, , 158-170.	1.3	17
72	Involution Solid and Join Codes. Lecture Notes in Computer Science, 2006, , 192-202.	1.3	2

#	Article	IF	Citations
73	Language equations, maximality and error-detection. Journal of Computer and System Sciences, 2005, 70, 157-178.	1.2	10
74	Aspects of shuffle and deletion on trajectories. Theoretical Computer Science, 2005, 332, 47-61.	0.9	19
75	On properties of bond-free DNA languages. Theoretical Computer Science, 2005, 334, 131-159.	0.9	23
76	OPERATIONS ON TRAJECTORIES WITH APPLICATIONS TO CODING AND BIOINFORMATICS. International Journal of Foundations of Computer Science, 2005, 16, 531-546.	1.1	4
77	BOND-FREE LANGUAGES: FORMALIZATIONS, MAXIMALITY AND CONSTRUCTION METHODS. International Journal of Foundations of Computer Science, 2005, 16, 1039-1070.	1.1	12
78	The spectrum of genomic signatures: from dinucleotides to chaos game representation. Gene, 2005, 346, 173-185.	2.2	96
79	Bond-Free Languages: Formalizations, Maximality and Construction Methods. Lecture Notes in Computer Science, 2005, , 169-181.	1.3	8
80	Sticky-free and overhang-free DNA languages. Acta Informatica, 2003, 40, 119-157.	0.5	41
81	Coding properties of DNA languages. Theoretical Computer Science, 2003, 290, 1557-1579.	0.9	40
82	Closure and decidability properties of some language classes with respect to ciliate bio-operations. Theoretical Computer Science, 2003, 306, 19-38.	0.9	31
83	Some Properties of Ciliate Bio-operations. Lecture Notes in Computer Science, 2003, , 116-127.	1.3	12
84	Coding Properties of DNA Languages. Lecture Notes in Computer Science, 2002, , 57-69.	1.3	18
85	Universal Molecular Computation in Ciliates. Natural Computing Series, 2002, , 257-274.	2.2	21
86	DNA Computing: Models and Implementations. Comments on Theoretical Biology, 2002, 7, 177-198.	0.6	18
87	DNA computing in vitro and in vivo. Future Generation Computer Systems, 2001, 17, 823-834.	7.5	9
88	Biocomputing. ACM SIGBIO Newsletter, 2001, 21, 10-15.	0.1	0
89	STRING OPERATIONS SUGGESTED BY DNA BIOCHEMISTRY: THE BALANCED CUT OPERATION. , 2001, , 275-287.		0
90	Computing with DNA. , 2000, 132, 413-430.		7

#	Article	IF	Citations
91	Using DNA to solve the Bounded Post Correspondence Problem. Theoretical Computer Science, 2000, 231, 193-203.	0.9	38
92	Shuffle and scattered deletion closure of languages. Theoretical Computer Science, 2000, 245, 115-133.	0.9	21
93	TOWARDS A DNA SOLUTION TO THE SHORTEST COMMON SUPERSTRING PROBLEM. International Journal on Artificial Intelligence Tools, 1999, 08, 385-399.	1.0	1
94	The evolution of cellular computing: nature's solution to a computational problem. BioSystems, 1999, 52, 3-13.	2.0	86
95	How to Compute with DNA. Lecture Notes in Computer Science, 1999, , 269-282.	1.3	8
96	Reversible Molecular Computation in Ciliates. , 1999, , 353-363.		17
97	At the crossroads of DNA computing and formal languages: Characterizing recursively enumerable languages using insertion-deletion systems. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 1999, , 329-346.	0.0	19
98	DNA computing, sticker systems, and universality. Acta Informatica, 1998, 35, 401-420.	0.5	98
99	Insertion and deletion closure of languages. Theoretical Computer Science, 1997, 183, 3-19.	0.9	21
100	L Systems. , 1997, , 253-328.		26
101	TWO LOWER BOUNDS ON DISTRIBUTIVE GENERATION OF LANGUAGES. Fundamenta Informaticae, 1996, 25, 271-284.	0.4	1
102	Contextual Insertions/Deletions and Computability. Information and Computation, 1996, 131, 47-61.	0.7	115
103	Maximal and Minimal Solutions to Language Equations. Journal of Computer and System Sciences, 1996, 53, 487-496.	1.2	16
104	K-catenation and applications:k-prefix codes. Journal of Information and Optimization Sciences, 1995, 16, 263-276.	0.3	10
105	Teams in cooperating grammar systems. Journal of Experimental and Theoretical Artificial Intelligence, 1995, 7, 347-359.	2.8	18
106	On parallel deletions applied to a word. RAIRO - Theoretical Informatics and Applications, 1995, 29, 129-144.	0.5	7
107	On language equations with invertible operations. Theoretical Computer Science, 1994, 132, 129-150.	0.9	52
108	Deletion operations: closure properties. International Journal of Computer Mathematics, 1994, 52, 23-42.	1.8	10

#	Article	IF	CITATIONS
109	Power of controlled insertion and deletion. Lecture Notes in Computer Science, 1994, , 197-212.	1.3	3
110	Aperiodic Languages and Generalizations. , 1994, , 233-243.		0
111	Generalized Derivatives. Fundamenta Informaticae, 1993, 18, 27-39.	0.4	2
112	In the prehistory of formal language theory: Gauss languages. , 1993, , 551-562.		0
113	Deletion Sets. Fundamenta Informaticae, 1993, 19, 355-370.	0.4	6
114	Insertion and deletion of words: Determinism and reversibility. Lecture Notes in Computer Science, 1992, , 315-326.	1.3	8