
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11860499/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 2002, 43, 4403-4412.                                                                                                                | 3.8  | 1,671     |
| 2  | Functional electrospun nanofibrous scaffolds for biomedical applications. Advanced Drug Delivery Reviews, 2007, 59, 1392-1412.                                                                                                    | 13.7 | 861       |
| 3  | Incorporation and controlled release of a hydrophilic antibiotic using<br>poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. Journal of Controlled Release,<br>2004, 98, 47-56.                                  | 9.9  | 707       |
| 4  | Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials, 2005, 26, 5330-5338.                                                                                                                               | 11.4 | 597       |
| 5  | NANOFIBROUS MATERIALS AND THEIR APPLICATIONS. Annual Review of Materials Research, 2006, 36, 333-368.                                                                                                                             | 9.3  | 573       |
| 6  | Control of degradation rate and hydrophilicity in electrospun non-woven poly(d,l-lactide) nanofiber scaffolds for biomedical applications. Biomaterials, 2003, 24, 4977-4985.                                                     | 11.4 | 524       |
| 7  | High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer, 2006, 47, 2434-2441.                                                                                            | 3.8  | 503       |
| 8  | Structure Development during Shear Flow-Induced Crystallization of i-PP:  In-Situ Small-Angle X-ray<br>Scattering Study. Macromolecules, 2000, 33, 9385-9394.                                                                     | 4.8  | 465       |
| 9  | Flow-induced shish-kebab precursor structures in entangled polymer melts. Polymer, 2005, 46, 8587-8623.                                                                                                                           | 3.8  | 427       |
| 10 | Functional nanofibers for environmental applications. Journal of Materials Chemistry, 2008, 18, 5326.                                                                                                                             | 6.7  | 388       |
| 11 | Crystallization Temperature-Dependent Crystal Orientations within Nanoscale Confined Lamellae of a<br>Self-Assembled Crystallineâ^Amorphous Diblock Copolymer. Journal of the American Chemical Society,<br>2000, 122, 5957-5967. | 13.7 | 387       |
| 12 | Structure Development during Shear Flow Induced Crystallization of i-PP:Â In Situ Wide-Angle X-ray<br>Diffraction Study. Macromolecules, 2001, 34, 5902-5909.                                                                     | 4.8  | 385       |
| 13 | Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts.<br>Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11915-11920.                       | 7.1  | 360       |
| 14 | Small-Angle X-ray Scattering of Polymers. Chemical Reviews, 2001, 101, 1727-1762.                                                                                                                                                 | 47.7 | 348       |
| 15 | High Flux Filtration Medium Based on Nanofibrous Substrate with Hydrophilic Nanocomposite<br>Coating. Environmental Science & Technology, 2005, 39, 7684-7691.                                                                    | 10.0 | 348       |
| 16 | Bioactive Nanofibers:Â Synergistic Effects of Nanotopography and Chemical Signaling on Cell Guidance.<br>Nano Letters, 2007, 7, 2122-2128.                                                                                        | 9.1  | 339       |
| 17 | Isothermal Crystallization of Poly( <scp>I</scp> -lactide) Induced by Graphene Nanosheets and Carbon<br>Nanotubes: A Comparative Study. Macromolecules, 2010, 43, 5000-5008.                                                      | 4.8  | 308       |
| 18 | Electro-Spinning and Electro-Blowing of Hyaluronic Acid. Biomacromolecules, 2004, 5, 1428-1436.                                                                                                                                   | 5.4  | 300       |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Myotube Assembly on Nanofibrous and Micropatterned Polymers. Nano Letters, 2006, 6, 537-542.                                                                                                                                 | 9.1  | 293       |
| 20 | Orientation and Crystallization of Natural Rubber Network As Revealed by WAXD Using Synchrotron Radiation. Macromolecules, 2004, 37, 3299-3309.                                                                              | 4.8  | 273       |
| 21 | Polymeric nanostructured materials for biomedical applications. Progress in Polymer Science, 2016, 60, 86-128.                                                                                                               | 24.7 | 257       |
| 22 | Unexpected Shish-Kebab Structure in a Sheared Polyethylene Melt. Physical Review Letters, 2005, 94,<br>117802.                                                                                                               | 7.8  | 254       |
| 23 | Optimization and Characterization of Dextran Membranes Prepared by Electrospinning.<br>Biomacromolecules, 2004, 5, 326-333.                                                                                                  | 5.4  | 253       |
| 24 | Electrospun nanofibrous membranes for high flux microfiltration. Journal of Membrane Science, 2012, 392-393, 167-174.                                                                                                        | 8.2  | 253       |
| 25 | Effects of organoclays on morphology and thermal and rheological properties of polystyrene and poly(methyl methacrylate) blends. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 44-54.                       | 2.1  | 250       |
| 26 | Ultra-fine cellulose nanofibers: new nano-scale materials for water purification. Journal of<br>Materials Chemistry, 2011, 21, 7507.                                                                                         | 6.7  | 250       |
| 27 | Micro-nano structure poly(ether sulfones)/poly(ethyleneimine) nanofibrous affinity membranes for<br>adsorption of anionic dyes and heavy metal ions in aqueous solution. Chemical Engineering Journal,<br>2012, 197, 88-100. | 12.7 | 250       |
| 28 | Structure and Morphology Changes during in Vitro Degradation of Electrospun<br>Poly(glycolide-co-lactide) Nanofiber Membrane. Biomacromolecules, 2003, 4, 416-423.                                                           | 5.4  | 248       |
| 29 | New Insights into Structural Development in Natural Rubber during Uniaxial Deformation by In Situ<br>Synchrotron X-ray Diffraction. Macromolecules, 2002, 35, 6578-6584.                                                     | 4.8  | 242       |
| 30 | High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds. Journal of Membrane Science, 2009, 326, 484-492.                                   | 8.2  | 237       |
| 31 | In-Situ Studies of Structure Development during Deformation of a Segmented Poly(urethaneâ^'urea)<br>Elastomer. Macromolecules, 2003, 36, 1940-1954.                                                                          | 4.8  | 236       |
| 32 | Temperature dependence of polymer crystalline morphology in nylon 6/montmorillonite nanocomposites. Polymer, 2001, 42, 09975-09985.                                                                                          | 3.8  | 234       |
| 33 | High performance ultrafiltration composite membranes based on poly(vinyl alcohol) hydrogel<br>coating on crosslinked nanofibrous poly(vinyl alcohol) scaffold. Journal of Membrane Science, 2006,<br>278, 261-268.           | 8.2  | 225       |
| 34 | Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds. Journal of<br>Biomedical Materials Research - Part A, 2006, 79A, 307-317.                                                         | 4.0  | 220       |
| 35 | Shear-Induced Precursor Structures in Isotactic Polypropylene Melt by in-Situ Rheo-SAXS and Rheo-WAXD Studies. Macromolecules, 2002, 35, 9096-9104.                                                                          | 4.8  | 219       |
| 36 | Shear-Enhanced Crystallization in Isotactic Polypropylene. 3. Evidence for a Kinetic Pathway to<br>Nucleation. Macromolecules, 2002, 35, 1762-1769.                                                                          | 4.8  | 217       |

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions.<br>Journal of Membrane Science, 2013, 446, 376-382.                                | 8.2 | 215       |
| 38 | Ultrafine Polysaccharide Nanofibrous Membranes for Water Purification. Biomacromolecules, 2011, 12, 970-976.                                                                         | 5.4 | 212       |
| 39 | Thiol-modified cellulose nanofibrous composite membranes for chromium (VI) and lead (II) adsorption. Polymer, 2014, 55, 1167-1176.                                                   | 3.8 | 211       |
| 40 | Control of structure, morphology and property in electrospun poly(glycolide-co-lactide) non-woven membranes via post-draw treatments. Polymer, 2003, 44, 4959-4967.                  | 3.8 | 207       |
| 41 | Nanofibrous Microfiltration Membrane Based on Cellulose Nanowhiskers. Biomacromolecules, 2012, 13, 180-186.                                                                          | 5.4 | 201       |
| 42 | Electrospun nanofiber membranes. Current Opinion in Chemical Engineering, 2016, 12, 62-81.                                                                                           | 7.8 | 200       |
| 43 | Shear-Induced Crystallization Precursor Studies in Model Polyethylene Blends by in-Situ Rheo-SAXS and Rheo-WAXD. Macromolecules, 2004, 37, 4845-4859.                                | 4.8 | 197       |
| 44 | Ultrafine Cellulose Nanofibers as Efficient Adsorbents for Removal of UO <sub>2</sub> <sup>2+</sup><br>in Water. ACS Macro Letters, 2012, 1, 213-216.                                | 4.8 | 187       |
| 45 | Nanoscale reinforcement of polyhedral oligomeric silsesquioxane (POSS) in polyurethane elastomer.<br>Polymer International, 2000, 49, 437-440.                                       | 3.1 | 182       |
| 46 | Hard and soft confinement effects on polymer crystallization in microphase separated cylinder-forming PEO-b-PS/PS blends. Polymer, 2001, 42, 9121-9131.                              | 3.8 | 179       |
| 47 | Shear-Induced Molecular Orientation and Crystallization in Isotactic Polypropylene: Effects of the Deformation Rate and Strain. Macromolecules, 2005, 38, 1244-1255.                 | 4.8 | 179       |
| 48 | Prevention of Postsurgery-Induced Abdominal Adhesions by Electrospun Bioabsorbable Nanofibrous<br>Poly(lactide-co-glycolide)-Based Membranes. Annals of Surgery, 2004, 240, 910-915. | 4.2 | 178       |
| 49 | The role of interlamellar chain entanglement in deformation-induced structure changes during<br>uniaxial stretching of isotactic polypropylene. Polymer, 2007, 48, 6867-6880.        | 3.8 | 173       |
| 50 | Structure, crystallization and morphology of poly (aryl ether ketone ketone). Polymer, 1992, 33, 2483-2495.                                                                          | 3.8 | 172       |
| 51 | Structural and Morphological Studies of Isotactic Polypropylene Fibers during Heat/Draw<br>Deformation by in-Situ Synchrotron SAXS/WAXD. Macromolecules, 2001, 34, 2569-2578.        | 4.8 | 172       |
| 52 | Improved barrier properties of poly(lactic acid) with randomly dispersed graphene oxide nanosheets.<br>Journal of Membrane Science, 2014, 464, 110-118.                              | 8.2 | 170       |
| 53 | Formation and Stability of Shear-Induced Shish-Kebab Structure in Highly Entangled Melts of UHMWPE/HDPE Blends. Macromolecules, 2008, 41, 4766-4776.                                 | 4.8 | 162       |
|    |                                                                                                                                                                                      |     |           |

54 Crystal Orientation Changes in Two-Dimensionally Confined Nanocylinders in a Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Physical gelation in ethylene–propylene copolymer melts induced by polyhedral oligomeric<br>silsesquioxane (POSS) molecules. Polymer, 2003, 44, 1499-1506.                                 | 3.8  | 160       |
| 56 | Graphene Nanosheets and Shear Flow Induced Crystallization in Isotactic Polypropylene<br>Nanocomposites. Macromolecules, 2011, 44, 2808-2818.                                              | 4.8  | 160       |
| 57 | Time-resolved X-ray study of poly(aryl ether ether ketone) crystallization and melting behaviour: 1.<br>Crystallization. Polymer, 1993, 34, 3986-3995.                                     | 3.8  | 157       |
| 58 | Formation of functional polyethersulfone electrospun membrane for water purification by mixed solvent and oxidation processes. Polymer, 2009, 50, 2893-2899.                               | 3.8  | 156       |
| 59 | Probing the Early Stages of Melt Crystallization in Polypropylene by Simultaneous Small- and<br>Wide-Angle X-ray Scattering and Laser Light Scattering. Macromolecules, 2000, 33, 978-989. | 4.8  | 154       |
| 60 | Highly Permeable Polymer Membranes Containing Directed Channels for Water Purification. ACS Macro Letters, 2012, 1, 723-726.                                                               | 4.8  | 154       |
| 61 | Initial-Stage Growth Controlled Crystal Orientations in Nanoconfined Lamellae of a Self-Assembled Crystallineâ^'Amorphous Diblock Copolymer. Macromolecules, 2001, 34, 1244-1251.          | 4.8  | 152       |
| 62 | Effective chromium removal from water by polyaniline-coated electrospun adsorbent membrane.<br>Chemical Engineering Journal, 2019, 372, 341-351.                                           | 12.7 | 151       |
| 63 | Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method. Polymer, 2008, 49, 2755-2761.                                                                         | 3.8  | 150       |
| 64 | Fabrication and characterization of cellulose nanofiber based thin-film nanofibrous composite membranes. Journal of Membrane Science, 2014, 454, 272-282.                                  | 8.2  | 150       |
| 65 | Unprecedented Access to Strong and Ductile Poly(lactic acid) by Introducing In Situ Nanofibrillar<br>Poly(butylene succinate) for Green Packaging. Biomacromolecules, 2014, 15, 4054-4064. | 5.4  | 149       |
| 66 | Effect of Nanoclay on Natural Rubber Microstructure. Macromolecules, 2008, 41, 6763-6772.                                                                                                  | 4.8  | 144       |
| 67 | Functionalized electrospun nanofibrous microfiltration membranes for removal of bacteria and viruses. Journal of Membrane Science, 2014, 452, 446-452.                                     | 8.2  | 142       |
| 68 | Shear-Induced Crystallization in Novel Long Chain Branched Polypropylenes by in Situ Rheo-SAXS and<br>-WAXD. Macromolecules, 2003, 36, 5226-5235.                                          | 4.8  | 141       |
| 69 | Dual-Biomimetic Superhydrophobic Electrospun Polystyrene Nanofibrous Membranes for Membrane<br>Distillation. ACS Applied Materials & Interfaces, 2014, 6, 2423-2430.                       | 8.0  | 141       |
| 70 | Mechanism of strain-induced crystallization in filled and unfilled natural rubber vulcanizates.<br>Journal of Applied Physics, 2005, 97, 103529.                                           | 2.5  | 140       |
| 71 | Low-dimensional carbonaceous nanofiller induced polymer crystallization. Progress in Polymer Science, 2014, 39, 555-593.                                                                   | 24.7 | 140       |
| 72 | Phase transformation in quenched mesomorphic isotactic polypropylene. Polymer, 2001, 42, 7561-7566.                                                                                        | 3.8  | 138       |

| #  | Article                                                                                                                                                                                                                                           | IF                 | CITATIONS            |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|
| 73 | High flux ultrafiltration nanofibrous membranes based on polyacrylonitrile electrospun scaffolds<br>and crosslinked polyvinyl alcohol coating. Journal of Membrane Science, 2009, 338, 145-152.                                                   | 8.2                | 138                  |
| 74 | Nanocellulose from Spinifex as an Effective Adsorbent to Remove Cadmium(II) from Water. ACS<br>Sustainable Chemistry and Engineering, 2018, 6, 3279-3290.                                                                                         | 6.7                | 138                  |
| 75 | Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments. Polymer, 2005, 46, 4853-4867.                                                                                         | 3.8                | 136                  |
| 76 | Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric<br>silsesquioxane molecules under quiescent and shear conditions. Journal of Polymer Science, Part B:<br>Polymer Physics, 2001, 39, 2727-2739. | 2.1                | 135                  |
| 77 | Electrospinning of Hyaluronic Acid (HA) and HA/Gelatin Blends. Macromolecular Rapid<br>Communications, 2006, 27, 114-120.                                                                                                                         | 3.9                | 134                  |
| 78 | Shear-Enhanced Crystallization in Isotactic Polypropylene. In-Situ Synchrotron SAXS and WAXD.<br>Macromolecules, 2004, 37, 9005-9017.                                                                                                             | 4.8                | 132                  |
| 79 | Entanglements and Networks to Strain-Induced Crystallization and Stress–Strain Relations in<br>Natural Rubber and Synthetic Polyisoprene at Various Temperatures. Macromolecules, 2013, 46,<br>5238-5248.                                         | 4.8                | 132                  |
| 80 | Mesophase as the Precursor for Strain-Induced Crystallization in Amorphous Poly(ethylene) Tj ETQq0 0 0 rgBT /C                                                                                                                                    | )verlock 10<br>4.8 | ) Tf 50 462 T<br>131 |
| 81 | Confinement Size Effect on Crystal Orientation Changes of Poly(ethylene oxide) Blocks in<br>Poly(ethylene oxide)-b-polystyrene Diblock Copolymers. Macromolecules, 2004, 37, 3689-3698.                                                           | 4.8                | 130                  |
| 82 | Structure and Morphology Changes in Absorbable Poly(glycolide) and Poly(glycolide-co-lactide)<br>during in Vitro Degradation. Macromolecules, 1999, 32, 8107-8114.                                                                                | 4.8                | 128                  |
| 83 | Competitive Growth of α- and β-Crystals in β-Nucleated Isotactic Polypropylene under Shear Flow.<br>Macromolecules, 2010, 43, 6760-6771.                                                                                                          | 4.8                | 128                  |
| 84 | Formation of Shish-Kebabs in Injection-Molded Poly( <scp>l</scp> -lactic acid) by Application of an Intense Flow Field. ACS Applied Materials & amp; Interfaces, 2012, 4, 6774-6784.                                                              | 8.0                | 128                  |
| 85 | High-flux microfiltration filters based on electrospun polyvinylalcohol nanofibrous membranes.<br>Polymer, 2013, 54, 548-556.                                                                                                                     | 3.8                | 128                  |
| 86 | Self-assembly and crystallization behavior of a double-crystalline polyethylene-block-poly(ethylene) Tj ETQq0 0 0                                                                                                                                 | rgBT_/Over         | rlock 10 Tf 5<br>127 |
| 87 | Patterning Polyethylene Oligomers on Carbon Nanotubes Using Physical Vapor Deposition. Nano<br>Letters, 2006, 6, 1007-1012.                                                                                                                       | 9.1                | 126                  |
| 88 | Block Copolymers with a Twist. Journal of the American Chemical Society, 2009, 131, 18533-18542.                                                                                                                                                  | 13.7               | 126                  |
| 89 | Phase structures and morphologies determined by competitions among self-organization,<br>crystallization, and vitrification in a disordered poly(ethylene oxide)-b-polystyrene diblock<br>copolymer. Physical Review B, 1999, 60, 10022-10031.    | 3.2                | 125                  |

90High-flux thin-film nanofibrous composite ultrafiltration membranes containing cellulose barrier<br/>layer. Journal of Materials Chemistry, 2010, 20, 4692.6.7125

| #   | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | In-Situ Simultaneous Synchrotron Small- and Wide-Angle X-ray Scattering Measurement of Poly(vinylidene fluoride) Fibers under Deformation. Macromolecules, 2000, 33, 1765-1777.                                | 4.8  | 124       |
| 92  | Perforated Layer Structures in Liquid Crystalline Rodâ^ Coil Block Copolymers. Journal of the American Chemical Society, 2005, 127, 15481-15490.                                                               | 13.7 | 124       |
| 93  | A Simple Approach to Prepare Carboxycellulose Nanofibers from Untreated Biomass.<br>Biomacromolecules, 2017, 18, 2333-2342.                                                                                    | 5.4  | 124       |
| 94  | Structure Study of Cellulose Fibers Wet-Spun from Environmentally Friendly NaOH/Urea Aqueous<br>Solutions. Biomacromolecules, 2007, 8, 1918-1926.                                                              | 5.4  | 121       |
| 95  | Molecular orientation and structural development in vulcanized polyisoprene rubbers during uniaxial deformation by in situ synchrotron X-ray diffraction. Polymer, 2003, 44, 6003-6011.                        | 3.8  | 120       |
| 96  | Nanocelluloseâ€Enabled Membranes for Water Purification: Perspectives. Advanced Sustainable<br>Systems, 2020, 4, 1900114.                                                                                      | 5.3  | 118       |
| 97  | Electrospun polystyrene nanofibrous membranes for direct contact membrane distillation. Journal of<br>Membrane Science, 2016, 515, 86-97.                                                                      | 8.2  | 114       |
| 98  | Characterization of Nanocellulose Using Small-Angle Neutron, X-ray, and Dynamic Light Scattering<br>Techniques. Journal of Physical Chemistry B, 2017, 121, 1340-1351.                                         | 2.6  | 112       |
| 99  | Deformation-Induced Phase Transition and Superstructure Formation in Poly(ethylene terephthalate).<br>Macromolecules, 2005, 38, 91-103.                                                                        | 4.8  | 111       |
| 100 | Development of hydrophilic barrier layer on nanofibrous substrate as composite membrane via a<br>facile route. Journal of Membrane Science, 2010, 356, 110-116.                                                | 8.2  | 111       |
| 101 | High performance thin-film nanofibrous composite hemodialysis membranes with efficient middle-molecule uremic toxin removal. Journal of Membrane Science, 2017, 523, 173-184.                                  | 8.2  | 111       |
| 102 | Glass transition, crystallization, and morphology relationships in miscible poly(aryl ether ketones)<br>and poly(ether imide) blends. Journal of Polymer Science, Part B: Polymer Physics, 1993, 31, 901-915.  | 2.1  | 110       |
| 103 | Time-resolved X-ray study of poly(aryl ether ether ketone) crystallization and melting behaviour: 2.<br>Melting. Polymer, 1993, 34, 3996-4003.                                                                 | 3.8  | 110       |
| 104 | Nanofiltration membranes prepared by interfacial polymerization on thin-film nanofibrous composite scaffold. Polymer, 2014, 55, 1358-1366.                                                                     | 3.8  | 109       |
| 105 | Precursors of primary nucleation induced by flow in isotactic polypropylene. Physica A: Statistical<br>Mechanics and Its Applications, 2002, 304, 145-157.                                                     | 2.6  | 107       |
| 106 | X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions. Polymer, 2006, 47, 2839-2848.                                                               | 3.8  | 107       |
| 107 | New insights into the relationship between network structure and strain-induced crystallization in un-vulcanized and vulcanized natural rubber by synchrotron X-ray diffraction. Polymer, 2009, 50, 2142-2148. | 3.8  | 107       |
| 108 | Nanofibrous polydopamine complex membranes for adsorption of Lanthanum (III) ions. Chemical<br>Engineering Journal, 2014, 244, 307-316.                                                                        | 12.7 | 106       |

| #   | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Time-resolved shear behavior of end-tethered Nylon 6–clay nanocomposites followed by non-isothermal crystallization. Polymer, 2001, 42, 9015-9023.                                                                                            | 3.8  | 105       |
| 110 | Nature of Strain-Induced Structures in Natural and Synthetic Rubbers under Stretching.<br>Macromolecules, 2003, 36, 5915-5917.                                                                                                                | 4.8  | 104       |
| 111 | In vitro non-viral gene delivery with nanofibrous scaffolds. Nucleic Acids Research, 2005, 33, e170-e170.                                                                                                                                     | 14.5 | 102       |
| 112 | Thermal Stability of Shear-Induced Shish-Kebab Precursor Structure from High Molecular Weight<br>Polyethylene Chains. Macromolecules, 2006, 39, 2209-2218.                                                                                    | 4.8  | 102       |
| 113 | Super-Robust Polylactide Barrier Films by Building Densely Oriented Lamellae Incorporated with<br>Ductile in Situ Nanofibrils of Poly(butylene adipate- <i>co</i> -terephthalate). ACS Applied Materials<br>& Interfaces, 2016, 8, 8096-8109. | 8.0  | 102       |
| 114 | Crystallization-Induced Undulated Morphology in Polystyrene-b-Poly(l-lactide) Block Copolymer.<br>Macromolecules, 2004, 37, 5985-5994.                                                                                                        | 4.8  | 99        |
| 115 | Debranching and crystallization of waxy maize starch in relation to enzyme digestibility.<br>Carbohydrate Polymers, 2010, 81, 385-393.                                                                                                        | 10.2 | 99        |
| 116 | Fabrication of thin-film nanofibrous composite membranes by interfacial polymerization using ionic liquids as additives. Journal of Membrane Science, 2010, 365, 52-58.                                                                       | 8.2  | 98        |
| 117 | Hierarchical Assembly of a Series of Rodâ^'Coil Block Copolymers:Â Supramolecular LC Phase in<br>Nanoenviroment. Macromolecules, 2004, 37, 2854-2860.                                                                                         | 4.8  | 97        |
| 118 | Structure Development during the Melt Spinning of Polyethylene and Poly(vinylidene fluoride) Fibers<br>by in Situ Synchrotron Small- and Wide-Angle X-ray Scattering Techniques. Macromolecules, 1999, 32,<br>8121-8132.                      | 4.8  | 96        |
| 119 | Crystallization and Stress Relaxation in Highly Stretched Samples of Natural Rubber and Its Synthetic<br>Analogue. Macromolecules, 2006, 39, 5100-5105.                                                                                       | 4.8  | 95        |
| 120 | Shear Flow and Carbon Nanotubes Synergistically Induced Nonisothermal Crystallization of Poly(lactic acid) and Its Application in Injection Molding. Biomacromolecules, 2012, 13, 3858-3867.                                                  | 5.4  | 95        |
| 121 | Strainâ€induced crystallization and mechanical properties of functionalized graphene sheetâ€filled<br>natural rubber. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 718-723.                                                 | 2.1  | 94        |
| 122 | Poly(ethyleneimine) nanofibrous affinity membrane fabricated via one step wet-electrospinning from poly(vinyl alcohol)-doped poly(ethyleneimine) solution system and its application. Journal of Membrane Science, 2011, 379, 191-199.        | 8.2  | 93        |
| 123 | Efficient Removal of Arsenic Using Zinc Oxide Nanocrystal-Decorated Regenerated Microfibrillated Cellulose Scaffolds. ACS Sustainable Chemistry and Engineering, 2019, 7, 6140-6151.                                                          | 6.7  | 93        |
| 124 | Understanding the Mechanistic Behavior of Highly Charged Cellulose Nanofibers in Aqueous Systems.<br>Macromolecules, 2018, 51, 1498-1506.                                                                                                     | 4.8  | 92        |
| 125 | UV-cured poly(vinyl alcohol) ultrafiltration nanofibrous membrane based on electrospun nanofiber scaffolds. Journal of Membrane Science, 2009, 328, 1-5.                                                                                      | 8.2  | 91        |
| 126 | Nanotailored Crystalline Morphology in Hexagonally Perforated Layers of a Self-Assembled PS-b-PEO<br>Diblock Copolymer. Macromolecules, 2002, 35, 3553-3562.                                                                                  | 4.8  | 90        |

| #   | Article                                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Novel nanofibrous scaffolds for water filtration with bacteria and virus removal capability. Journal of Electron Microscopy, 2011, 60, 201-209.                                                                                                                                               | 0.9  | 90        |
| 128 | Effect of Network-Chain Length on Strain-Induced Crystallization of NR and IR Vulcanizates. Rubber Chemistry and Technology, 2004, 77, 711-723.                                                                                                                                               | 1.2  | 89        |
| 129 | Effects of high molecular weight species on shear-induced orientation and crystallization of isotactic polypropylene. Polymer, 2006, 47, 5657-5668.                                                                                                                                           | 3.8  | 89        |
| 130 | In Situ Synchrotron X-ray Scattering Study on Isotactic Polypropylene Crystallization under the Coexistence of Shear Flow and Carbon Nanotubes. Macromolecules, 2011, 44, 8080-8092.                                                                                                          | 4.8  | 89        |
| 131 | Strong Shear Flow-Driven Simultaneous Formation of Classic Shish-Kebab, Hybrid Shish-Kebab, and<br>Transcrystallinity in Poly(lactic acid)/Natural Fiber Biocomposites. ACS Sustainable Chemistry and<br>Engineering, 2013, 1, 1619-1629.                                                     | 6.7  | 89        |
| 132 | Strain-Induced Crystallization of Natural Rubber: Effect of Proteins and Phospholipids. Rubber<br>Chemistry and Technology, 2008, 81, 753-766.                                                                                                                                                | 1.2  | 88        |
| 133 | Highly efficient and sustainable carboxylated cellulose filters for removal of cationic dyes/heavy metals ions. Chemical Engineering Journal, 2020, 389, 123458.                                                                                                                              | 12.7 | 88        |
| 134 | Comparison of poly(ethylene oxide) crystal orientations and crystallization behaviors in<br>nano-confined cylinders constructed by a poly(ethylene oxide)-b-polystyrene diblock copolymer and a<br>blend of poly(ethylene oxide)-b-polystyrene and polystyrene. Polymer, 2006, 47, 5457-5466. | 3.8  | 87        |
| 135 | Enhanced Mechanical Performance of Selfâ€Bundled Electrospun Fiber Yarns via Postâ€Treatments.<br>Macromolecular Rapid Communications, 2008, 29, 826-831.                                                                                                                                     | 3.9  | 87        |
| 136 | Isothermal thickening and thinning processes in low-molecular-weight poly(ethylene oxide) fractions<br>crystallized from the melt. 4. End-group dependence. Macromolecules, 1993, 26, 5105-5117.                                                                                              | 4.8  | 85        |
| 137 | Probing the Nature of Strain-Induced Crystallization in Polyisoprene Rubber by Combined<br>Thermomechanical and In Situ X-ray Diffraction Techniques. Macromolecules, 2005, 38, 7064-7073.                                                                                                    | 4.8  | 85        |
| 138 | Design and fabrication of electrospun polyethersulfone nanofibrous scaffold for highâ€flux<br>nanofiltration membranes. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 2288-2300.                                                                                             | 2.1  | 84        |
| 139 | Thin-film nanofibrous composite membranes containing cellulose or chitin barrier layers fabricated by ionic liquids. Polymer, 2011, 52, 2594-2599.                                                                                                                                            | 3.8  | 84        |
| 140 | High flux ethanol dehydration using nanofibrous membranes containing graphene oxide barrier<br>layers. Journal of Materials Chemistry A, 2013, 1, 12998.                                                                                                                                      | 10.3 | 84        |
| 141 | Self-roughened omniphobic coatings on nanofibrous membrane for membrane distillation. Separation and Purification Technology, 2018, 206, 14-25.                                                                                                                                               | 7.9  | 82        |
| 142 | Nanocellulose for Sustainable Water Purification. Chemical Reviews, 2022, 122, 8936-9031.                                                                                                                                                                                                     | 47.7 | 82        |
| 143 | Strain-Induced Molecular Orientation and Crystallization in Natural and Synthetic Rubbers under<br>Uniaxial Deformation by In-situ Synchrotron X-ray Study. Rubber Chemistry and Technology, 2004, 77,<br>317-335.                                                                            | 1.2  | 81        |
| 144 | Structural formation of amorphous poly(ethylene terephthalate) during uniaxial deformation above glass temperature. Polymer, 2004, 45, 905-918.                                                                                                                                               | 3.8  | 81        |

| #   | Article                                                                                                                                                                                                                                                                    | IF                | CITATIONS       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|
| 145 | Nanofibrous ultrafiltration membranes containing cross-linked poly(ethylene glycol) and cellulose nanofiber composite barrier layer. Polymer, 2014, 55, 366-372.                                                                                                           | 3.8               | 80              |
| 146 | Nanofiltration membranes based on thin-film nanofibrous composites. Journal of Membrane Science, 2014, 469, 188-197.                                                                                                                                                       | 8.2               | 80              |
| 147 | Phase Diagram of a Nearly Isorefractive Polyolefin Blend. Macromolecules, 2002, 35, 1072-1078.                                                                                                                                                                             | 4.8               | 79              |
| 148 | Crystallization and structure formation of poly(l-lactide-co-meso-lactide) random copolymers: a<br>time-resolved wide- and small-angle X-ray scattering study. Polymer, 2003, 44, 711-717.                                                                                 | 3.8               | 79              |
| 149 | Efficient Removal of UO <sub>2</sub> <sup>2+</sup> from Water Using Carboxycellulose Nanofibers<br>Prepared by the Nitro-Oxidation Method. Industrial & Engineering Chemistry Research, 2017, 56,<br>13885-13893.                                                          | 3.7               | 79              |
| 150 | Single Molecular Layer of Silk Nanoribbon as Potential Basic Building Block of Silk Materials. ACS<br>Nano, 2018, 12, 11860-11870.                                                                                                                                         | 14.6              | 79              |
| 151 | Lateral Packing of Mineral Crystals in Bone Collagen Fibrils. Biophysical Journal, 2008, 95, 1985-1992.                                                                                                                                                                    | 0.5               | 77              |
| 152 | Interfacial Shish-Kebabs Lengthened by Coupling Effect of In Situ Flexible Nanofibrils and Intense<br>Shear Flow: Achieving Hierarchy To Conquer the Conflicts between Strength and Toughness of<br>Polylactide. ACS Applied Materials & Interfaces, 2017, 9, 10148-10159. | 8.0               | 77              |
| 153 | Comparison of crystallization kinetics in various nanoconfined geometries. Polymer, 2004, 45, 2931-2939.                                                                                                                                                                   | 3.8               | 76              |
| 154 | The effects of endlinking network and entanglement to stress–strain relation and strain-induced crystallization of un-vulcanized and vulcanized natural rubber. Polymer, 2012, 53, 3325-3330.                                                                              | 3.8               | 76              |
| 155 | Synthesis and Characterization of Segmented Polyurethanes Containing Polyhedral Oligomeric<br>Silsesquioxanes Nanostructured Molecules. High Performance Polymers, 2000, 12, 565-571.                                                                                      | 1.8               | 74              |
| 156 | Eco-friendly poly(acrylic acid)-sodium alginate nanofibrous hydrogel: A multifunctional platform for<br>superior removal of Cu(II) and sustainable catalytic applications. Colloids and Surfaces A:<br>Physicochemical and Engineering Aspects, 2018, 558, 228-241.        | 4.7               | 74              |
| 157 | An <i>in Situ</i> X-ray Structural Study of Olefin Block and Random Copolymers under Uniaxial Deformation. Macromolecules, 2010, 43, 1922-1929.                                                                                                                            | 4.8               | 73              |
| 158 | Anionic Surfactant-Triggered Steiner Geometrical Poly(vinylidene fluoride) Nanofiber/Nanonet Air<br>Filter for Efficient Particulate Matter Removal. ACS Applied Materials & Interfaces, 2018, 10,<br>42891-42904.                                                         | 8.0               | 73              |
| 159 | Novel image analysis of two-dimensional X-ray fiber diffraction patterns: example of a polypropylene<br>fiber drawing study. Journal of Applied Crystallography, 2000, 33, 1031-1036.                                                                                      | 4.5               | 72              |
| 160 | Highly permeable nanofibrous composite microfiltration membranes for removal of nanoparticles and heavy metal ions. Separation and Purification Technology, 2020, 233, 115976.                                                                                             | 7.9               | 72              |
| 161 | Mechanism of Structural Formation by Uniaxial Deformation in Amorphous Poly(ethylene) Tj ETQq1 1 0.784314                                                                                                                                                                  | ⊦rg₿T,/Ove<br>4.8 | erlock 10 Tf 50 |
| 162 | In-Situ X-ray Scattering Studies of a Unique Toughening Mechanism in Surface-Modified Carbon                                                                                                                                                                               | 4.8               | 70              |

Nanofiber/ÚHMWPE Nanocomposite Films. Macromolecules, 2005, 38, 3883-3893.

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | High flux low pressure thin film nanocomposite ultrafiltration membranes based on nanofibrous substrates. Separation and Purification Technology, 2013, 108, 143-151.                                                                | 7.9 | 70        |
| 164 | Silver Nanoparticle-Enabled Photothermal Nanofibrous Membrane for Light-Driven Membrane<br>Distillation. Industrial & Engineering Chemistry Research, 2019, 58, 3269-3281.                                                           | 3.7 | 70        |
| 165 | Polymorphism in poly(aryl ether ketone)s. Polymer, 1994, 35, 2290-2295.                                                                                                                                                              | 3.8 | 69        |
| 166 | SAXS studies of lamellar level morphological changes during crystallization and melting in PEEK.<br>Polymer, 1996, 37, 5357-5365.                                                                                                    | 3.8 | 69        |
| 167 | Thiol-functionalized chitin nanofibers for As (III) adsorption. Polymer, 2015, 60, 9-17.                                                                                                                                             | 3.8 | 69        |
| 168 | Superior Impact Toughness and Excellent Storage Modulus of Poly(lactic acid) Foams Reinforced by<br>Shish-Kebab Nanoporous Structure. ACS Applied Materials & Interfaces, 2017, 9, 21071-21076.                                      | 8.0 | 69        |
| 169 | Thin-film nanofibrous composite reverse osmosis membranes for desalination. Desalination, 2017, 420, 91-98.                                                                                                                          | 8.2 | 69        |
| 170 | Lead removal from water using carboxycellulose nanofibers prepared by nitro-oxidation method.<br>Cellulose, 2018, 25, 1961-1973.                                                                                                     | 4.9 | 69        |
| 171 | Effects of molecular weight on poly(ω-pentadecalactone) mechanical and thermal properties. Polymer, 2010, 51, 1088-1099.                                                                                                             | 3.8 | 67        |
| 172 | From Nanofibrillar to Nanolaminar Poly(butylene succinate): Paving the Way to Robust Barrier and<br>Mechanical Properties for Full-Biodegradable Poly(lactic acid) Films. ACS Applied Materials &<br>Interfaces, 2015, 7, 8023-8032. | 8.0 | 67        |
| 173 | Integrated polyamide thin-film nanofibrous composite membrane regulated by functionalized<br>interlayer for efficient water/isopropanol separation. Journal of Membrane Science, 2018, 553, 70-81.                                   | 8.2 | 67        |
| 174 | Crystallization Behavior of Poly(ethylene oxide) and Its Blends Using Time-Resolved Wide- and<br>Small-Angle X-ray Scattering. Macromolecules, 2000, 33, 4842-4849.                                                                  | 4.8 | 66        |
| 175 | Structure Changes during Uniaxial Deformation of Ethylene-Based Semicrystalline<br>Ethyleneâ^Propylene Copolymer. 1. SAXS Study. Macromolecules, 2003, 36, 1920-1929.                                                                | 4.8 | 66        |
| 176 | Tuning the Superstructure of Ultrahigh-Molecular-Weight Polyethylene/Low-Molecular-Weight<br>Polyethylene Blend for Artificial Joint Application. ACS Applied Materials & Interfaces, 2012, 4,<br>1521-1529.                         | 8.0 | 66        |
| 177 | Arsenic(III) Removal by Nanostructured Dialdehyde Cellulose–Cysteine Microscale and Nanoscale<br>Fibers. ACS Omega, 2019, 4, 22008-22020.                                                                                            | 3.5 | 66        |
| 178 | Crystal Orientation Change and Its Origin in One-Dimensional Nanoconfinement Constructed by<br>Polystyrene- <i>block</i> -poly(ethylene oxide) Single Crystal Mats. Macromolecules, 2008, 41, 8114-8123.                             | 4.8 | 65        |
| 179 | Interactions between Crystalline and Amorphous Domains in Semicrystalline Polymers:Â Small-Angle<br>X-ray Scattering Studies of the Brill Transition in Nylon 6,6. Macromolecules, 1999, 32, 5594-5599.                              | 4.8 | 64        |
| 180 | On the nature of multiple melting in poly(ethylene terephthalate) (PET) and its copolymers with cyclohexylene dimethylene terephthalate (PET/CT). Polymer, 2003, 44, 1527-1535.                                                      | 3.8 | 64        |

| #   | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Crystal Morphology and Phase Identifications in Poly(aryl ether ketone)s and Their Copolymers. 1.<br>Polymorphism in PEKK. Macromolecules, 1994, 27, 2136-2140.                                                           | 4.8  | 63        |
| 182 | Dislocation-Controlled Perforated Layer Phase in a PEO- b-PS Diblock Copolymer. Physical Review Letters, 2001, 86, 6030-6033.                                                                                             | 7.8  | 63        |
| 183 | Shear-induced crystallization in isotactic polypropylene containing ultra-high molecular weight polyethylene oriented precursor domains. Polymer, 2005, 46, 3096-3104.                                                    | 3.8  | 62        |
| 184 | Shear-induced crystallization of isotactic polypropylene within the oriented scaffold of noncrystalline ultrahigh molecular weight polyethylene. Polymer, 2005, 46, 8859-8871.                                            | 3.8  | 62        |
| 185 | Structure Evolution during Cyclic Deformation of an Elastic Propylene-Based Ethyleneâ^'Propylene<br>Copolymer. Macromolecules, 2006, 39, 3588-3597.                                                                       | 4.8  | 62        |
| 186 | Functionalization of poly(L-lactide) nanofibrous scaffolds with bioactive collagen molecules.<br>Journal of Biomedical Materials Research - Part A, 2007, 83A, 1117-1127.                                                 | 4.0  | 62        |
| 187 | Low pressure UV-cured CS–PEO–PTEGDMA/PAN thin film nanofibrous composite nanofiltration membranes for anionic dye separation. Journal of Materials Chemistry A, 2016, 4, 15575-15588.                                     | 10.3 | 62        |
| 188 | Effect of the heterogeneous distribution of lamellar stacks on amorphous relaxations in semicrystalline polymers. Polymer, 1995, 36, 2553-2558.                                                                           | 3.8  | 61        |
| 189 | Structural developments in synthetic rubbers during uniaxial deformation byin situ synchrotron<br>X-ray diffraction. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 956-964.                              | 2.1  | 61        |
| 190 | Superstructure Evolution in Poly(ethylene terephthalate) during Uniaxial Deformation above Glass<br>Transition Temperature. Macromolecules, 2006, 39, 2909-2920.                                                          | 4.8  | 61        |
| 191 | Real-Time Crystallization of Organoclay Nanoparticle Filled Natural Rubber under Stretching.<br>Macromolecules, 2008, 41, 2295-2298.                                                                                      | 4.8  | 61        |
| 192 | Low pressure high flux thin film nanofibrous composite membranes prepared by electrospraying technique combined with solution treatment. Journal of Membrane Science, 2012, 394-395, 241-247.                             | 8.2  | 61        |
| 193 | Strong and tough micro/nanostructured poly(lactic acid) by mimicking the multifunctional hierarchy of shell. Materials Horizons, 2014, 1, 546-552.                                                                        | 12.2 | 61        |
| 194 | Relationships between Structure and Rheology in Model Nanocomposites of Ethyleneâ^'Vinyl-Based<br>Copolymers and Organoclays. Macromolecules, 2005, 38, 3765-3775.                                                        | 4.8  | 60        |
| 195 | Easy alignment and effective nucleation activity of ramie fibers in injectionâ€molded poly(lactic acid)<br>biocomposites. Biopolymers, 2012, 97, 825-839.                                                                 | 2.4  | 60        |
| 196 | Molecular dynamics and microstructure development during cold crystallization in<br>poly(ether-ether-ketone) as revealed by real time dielectric and x-ray methods. Journal of Chemical<br>Physics, 2001, 115, 3804-3813. | 3.0  | 59        |
| 197 | Probing nucleation and growth behavior of twisted kebabs from shish scaffold in sheared polyethylene melts by in situ X-ray studies. Polymer, 2007, 48, 4511-4519.                                                        | 3.8  | 59        |
| 198 | Multiâ€scaled microstructures in natural rubber characterized by synchrotron Xâ€ray scattering and optical microscopy. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 2456-2464.                          | 2.1  | 59        |

| #   | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Chemical crosslinking and biophysical properties of electrospun hyaluronic acid based ultra-thin fibrous membranes. Polymer, 2009, 50, 3762-3769.                                                                                                      | 3.8  | 59        |
| 200 | Crystal and Crystallites Structure of Natural Rubber and Synthetic <i>cis</i> -1,4-Polyisoprene by a<br>New Two Dimensional Wide Angle X-ray Diffraction Simulation Method. I. Strain-Induced<br>Crystallization. Macromolecules, 2013, 46, 4520-4528. | 4.8  | 59        |
| 201 | Structure characterization of cellulose nanofiber hydrogel as functions of concentration and ionic strength. Cellulose, 2017, 24, 5417-5429.                                                                                                           | 4.9  | 59        |
| 202 | New Insight of Isothermal Melt Crystallization in Poly(aryl ether ether ketone) via Time-Resolved<br>Simultaneous Small-Angle X-ray Scattering/Wide-Angle X-ray Diffraction Measurements.<br>Macromolecules, 1995, 28, 6931-6936.                      | 4.8  | 58        |
| 203 | "Plastic Deformation―Mechanism and Phase Transformation in a Shear-Induced Metastable<br>Hexagonally Perforated Layer Phase of a Polystyrene-b-poly(ethylene oxide) Diblock Copolymer.<br>Macromolecules, 2003, 36, 3180-3188.                         | 4.8  | 58        |
| 204 | New Insights into Lamellar Structure Development and SAXS/WAXD Sequence Appearance during<br>Uniaxial Stretching of Amorphous Poly(ethylene terephthalate) above Glass Transition Temperature.<br>Macromolecules, 2008, 41, 2859-2867.                 | 4.8  | 58        |
| 205 | Cationic Dialdehyde Nanocellulose from Sugarcane Bagasse for Efficient Chromium(VI) Removal. ACS<br>Sustainable Chemistry and Engineering, 2020, 8, 4734-4744.                                                                                         | 6.7  | 58        |
| 206 | Role of Stably Entangled Chain Network Density in Shish-Kebab Formation in Polyethylene under an<br>Intense Flow Field. Macromolecules, 2015, 48, 6652-6661.                                                                                           | 4.8  | 57        |
| 207 | Combined effect of shear and fibrous fillers on orientation-induced crystallization in discontinuous aramid fiber/isotactic polypropylene composites. Polymer, 2008, 49, 295-302.                                                                      | 3.8  | 56        |
| 208 | Rheological study of carbon nanofiber induced physical gelation in polyolefin nanocomposite melt.<br>Polymer, 2005, 46, 11591-11599.                                                                                                                   | 3.8  | 55        |
| 209 | Effects of Block Architecture on Structure and Mechanical Properties of Olefin Block Copolymers under Uniaxial Deformation. Macromolecules, 2011, 44, 3670-3673.                                                                                       | 4.8  | 55        |
| 210 | Isothermal crystallization kinetics of poly(ether ketone ketone) and its carbon-fibre-reinforced composites. Polymer, 1991, 32, 2799-2805.                                                                                                             | 3.8  | 54        |
| 211 | Structure development in the early stages of crystallization during melt spinning. Polymer, 2002, 43, 1873-1875.                                                                                                                                       | 3.8  | 54        |
| 212 | Ultra-fine electrospun nanofibrous membranes for multicomponent wastewater treatment: Filtration and Purification Technology, 2020, 242, 116794.                                                                                                       | 7.9  | 53        |
| 213 | Super-hydrophobic modification of porous natural polymer "luffa sponge―for oil absorption.<br>Polymer, 2017, 126, 470-476.                                                                                                                             | 3.8  | 52        |
| 214 | Robust superhydrophobic dual layer nanofibrous composite membranes with a hierarchically<br>structured amorphous polypropylene skin for membrane distillation. Journal of Materials Chemistry<br>A, 2019, 7, 11282-11297.                              | 10.3 | 52        |
| 215 | A laserâ€∎ided prealigned pinhole collimator for synchrotron x rays. Review of Scientific Instruments, 1994, 65, 597-602.                                                                                                                              | 1.3  | 51        |
| 216 | Structure development during melt spinning and subsequent annealing of polybutene-1 fibers. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 1872-1882.                                                                                  | 2.1  | 49        |

| #   | Article                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Characterization of TEMPO-oxidized cellulose nanofibers in aqueous suspension by small-angle X-ray scattering. Journal of Applied Crystallography, 2014, 47, 788-798.                                                                                                                      | 4.5 | 49        |
| 218 | High filtration performance thin film nanofibrous composite membrane prepared by electrospraying technique and hot-pressing treatment. Journal of Membrane Science, 2016, 499, 470-479.                                                                                                    | 8.2 | 49        |
| 219 | Structure and property studies of bioabsorbable poly(glycolide-co-lactide) fiber during processing and in vitro degradation. Polymer, 2002, 43, 5527-5534.                                                                                                                                 | 3.8 | 48        |
| 220 | Exploring the Nature of Cellulose Microfibrils. Biomacromolecules, 2015, 16, 1201-1209.                                                                                                                                                                                                    | 5.4 | 48        |
| 221 | Nature of Shear-Induced Primary Nuclei in iPP Melt. Journal of Macromolecular Science - Physics, 2003, 42, 515-531.                                                                                                                                                                        | 1.0 | 47        |
| 222 | Deformation-induced highly oriented and stable mesomorphic phase in quenched isotactic polypropylene. Polymer, 2007, 48, 6934-6947.                                                                                                                                                        | 3.8 | 47        |
| 223 | Thin-Film Nanofibrous Composite Ultrafiltration Membranes Based on Polyvinyl Alcohol Barrier Layer<br>Containing Directional Water Channels. Industrial & Engineering Chemistry Research, 2010, 49,<br>11978-11984.                                                                        | 3.7 | 47        |
| 224 | Molecular dynamics of natural rubber as revealed by dielectric spectroscopy: The role of natural<br>cross–linking. Soft Matter, 2010, 6, 3636.                                                                                                                                             | 2.7 | 47        |
| 225 | High Aspect Ratio Carboxycellulose Nanofibers Prepared by Nitro-Oxidation Method and Their Nanopaper Properties. ACS Applied Nano Materials, 2018, 1, 3969-3980.                                                                                                                           | 5.0 | 47        |
| 226 | Morphological features and melting behavior of nanocomposites based on isotactic polypropylene and multiwalled carbon nanotubes. Journal of Applied Polymer Science, 2007, 106, 2640-2647.                                                                                                 | 2.6 | 46        |
| 227 | Role of stearic acid in the strain-induced crystallization of crosslinked natural rubber and synthetic cis-1,4-polyisoprene. Polymer, 2007, 48, 3801-3808.                                                                                                                                 | 3.8 | 46        |
| 228 | The relationship between microstructure and toughness of biaxially oriented semicrystalline polyester films. Polymer, 2008, 49, 2507-2514.                                                                                                                                                 | 3.8 | 46        |
| 229 | Molecular orientation and stress relaxation during strain-induced crystallization of vulcanized natural rubber. Polymer Journal, 2010, 42, 474-481.                                                                                                                                        | 2.7 | 46        |
| 230 | Real-Time Structure Changes during Uniaxial Stretching of Poly(ω-pentadecalactone) by <i>in Situ</i> Synchrotron WAXD/SAXS Techniques. Macromolecules, 2011, 44, 3874-3883.                                                                                                                | 4.8 | 46        |
| 231 | Antifouling nanocellulose membranes: How subtle adjustment of surface charge lead to self-cleaning property. Journal of Membrane Science, 2021, 618, 118739.                                                                                                                               | 8.2 | 46        |
| 232 | Uniaxial deformation of an elastomer nanocomposite containing modified carbon nanofibers by in situ synchrotron X-ray diffraction. Polymer, 2005, 46, 5103-5117.                                                                                                                           | 3.8 | 45        |
| 233 | The role of polymers in breakthrough technologies for water purification. Journal of Polymer<br>Science, Part B: Polymer Physics, 2009, 47, 2431-2435.                                                                                                                                     | 2.1 | 45        |
| 234 | Crystal and Crystallites Structure of Natural Rubber and Peroxide-Vulcanized Natural Rubber by a<br>Two-Dimensional Wide-Angle X-ray Diffraction Simulation Method. II. Strain-Induced Crystallization<br>versus Temperature-Induced Crystallization. Macromolecules, 2013, 46, 9712-9721. | 4.8 | 45        |

| #   | Article                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Cross-Sections of Nanocellulose from Wood Analyzed by Quantized Polydispersity of Elementary<br>Microfibrils. ACS Nano, 2020, 14, 16743-16754.                                                                                                                                | 14.6 | 45        |
| 236 | Electrospun Nanofibrous Scaffolds for Biomedical Applications. Journal of Biomedical Nanotechnology, 2005, 1, 115-132.                                                                                                                                                        | 1.1  | 44        |
| 237 | Suppressing the Skin–Core Structure of Injection-Molded Isotactic Polypropylene via Combination of<br>an in situ Microfibrillar Network and an Interfacial Compatibilizer. Journal of Physical Chemistry B,<br>2011, 115, 7497-7504.                                          | 2.6  | 44        |
| 238 | Continuous fabrication of cellulose nanocrystal/poly(ethylene glycol) diacrylate hydrogel fiber<br>from nanocomposite dispersion: Rheology, preparation and characterization. Polymer, 2017, 123, 55-64.                                                                      | 3.8  | 44        |
| 239 | In Vitro Mineralization of Collagen in Demineralized Fish Bone. Macromolecular Chemistry and Physics, 2005, 206, 43-51.                                                                                                                                                       | 2.2  | 43        |
| 240 | Shear-Induced Precursor Relaxation-Dependent Growth Dynamics and Lamellar Orientation of<br>β-Crystals in β-Nucleated Isotactic Polypropylene. Journal of Physical Chemistry B, 2015, 119, 5716-5727.                                                                         | 2.6  | 43        |
| 241 | In Situ Nanofibrillar Networks Composed of Densely Oriented Polylactide Crystals as Efficient<br>Reinforcement and Promising Barrier Wall for Fully Biodegradable Poly(butylene succinate)<br>Composite Films. ACS Sustainable Chemistry and Engineering, 2016, 4, 2887-2897. | 6.7  | 43        |
| 242 | Novel thin-film nanofibrous composite membranes containing directional toxin transport<br>nanochannels for efficient and safe hemodialysis application. Journal of Membrane Science, 2019, 582,<br>151-163.                                                                   | 8.2  | 43        |
| 243 | Elucidating the Opportunities and Challenges for Nanocellulose Spinning. Advanced Materials, 2021, 33, e2001238.                                                                                                                                                              | 21.0 | 43        |
| 244 | Facile synthesis of TiO2/CNC nanocomposites for enhanced Cr(VI) photoreduction: Synergistic roles of cellulose nanocrystals. Carbohydrate Polymers, 2020, 233, 115838.                                                                                                        | 10.2 | 43        |
| 245 | Preferred Orientation in Polymer Fiber Scattering. Polymer Reviews, 2010, 50, 91-111.                                                                                                                                                                                         | 10.9 | 42        |
| 246 | 2D WAXS/SAXS study on isotactic propylene-1-butylene random copolymer subjected to uniaxial stretching: The influence of temperature. Polymer, 2013, 54, 1432-1439.                                                                                                           | 3.8  | 42        |
| 247 | Strong Silk Fibers Containing Cellulose Nanofibers Generated by a Bioinspired Microfluidic Chip. ACS Sustainable Chemistry and Engineering, 2019, 7, 14765-14774.                                                                                                             | 6.7  | 42        |
| 248 | Synthesis and Characterization of Poly(oxy-1,3-phenylenecarbonyl-1,4-phenylene) and Related Polymers.<br>Macromolecules, 1996, 29, 6432-6441.                                                                                                                                 | 4.8  | 41        |
| 249 | Isothermal Thickening and Thinning Processes in Low-Molecular-Weight Poly(ethylene oxide)<br>Fractions Crystallized from the Melt. 8. Molecular Shape Dependence§. Macromolecules, 1999, 32,<br>4784-4793.                                                                    | 4.8  | 41        |
| 250 | In situ observation of low molecular weight poly(ethylene oxide) crystal melting, recrystallization.<br>Polymer, 2003, 44, 6051-6058.                                                                                                                                         | 3.8  | 41        |
| 251 | Tough and Elastic Thermoplastic Organogels and Elastomers Made of Semicrystalline<br>Polyolefin-Based Block Copolymers. Macromolecules, 2012, 45, 5604-5618.                                                                                                                  | 4.8  | 41        |
| 252 | Engineering construction of robust superhydrophobic two-tier composite membrane with<br>interlocked structure for membrane distillation. Journal of Membrane Science, 2020, 598, 117813.                                                                                      | 8.2  | 41        |

| #   | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Biodegradable silk fibroin-based bio-piezoelectric/triboelectric nanogenerators as self-powered electronic devices. Nano Energy, 2022, 96, 107101.                                                                                                       | 16.0 | 41        |
| 254 | Lamellar Formation and Relaxation in Simple Sheared Poly(ethylene terephthalate) by Small-Angle<br>X-ray Scattering. Macromolecules, 2006, 39, 2930-2939.                                                                                                | 4.8  | 40        |
| 255 | In-Situ X-ray Deformation Study of Fluorinated Multiwalled Carbon Nanotube and Fluorinated Ethyleneâ^'Propylene Nanocomposite Fibers. Macromolecules, 2006, 39, 5427-5437.                                                                               | 4.8  | 40        |
| 256 | Biofouling-resistant nanocellulose layer in hierarchical polymeric membranes: Synthesis, characterization and performance. Journal of Membrane Science, 2019, 579, 162-171.                                                                              | 8.2  | 40        |
| 257 | Side-Chain Liquid Crystalline Poly(meth)acrylates with Bent-Core Mesogens. Macromolecules, 2007, 40, 840-848.                                                                                                                                            | 4.8  | 39        |
| 258 | A durable thin-film nanofibrous composite nanofiltration membrane prepared by interfacial polymerization on a double-layer nanofibrous scaffold. RSC Advances, 2017, 7, 18001-18013.                                                                     | 3.6  | 39        |
| 259 | Isothermal Thickening and Thinning Processes in Low Molecular Weight Poly(ethylene oxide)<br>Fractions Crystallized from the Melt. 5. Effect of Chain Defects. Macromolecules, 1996, 29, 8816-8823.                                                      | 4.8  | 38        |
| 260 | Processingâ€structureâ€mechanical property relationships of semicrystalline polyolefinâ€based block<br>copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1428-1437.                                                             | 2.1  | 38        |
| 261 | Design and Synthesis of Network-Forming Triblock Copolymers Using Tapered Block Interfaces. ACS<br>Macro Letters, 2012, 1, 519-523.                                                                                                                      | 4.8  | 38        |
| 262 | Plastic Deformation of Semicrystalline Polyethylene by X-ray Scattering: Comparison with Atomistic<br>Simulations. Macromolecules, 2013, 46, 5279-5289.                                                                                                  | 4.8  | 38        |
| 263 | Simultaneous improvement of strength and toughness in fiber reinforced isotactic polypropylene composites by shear flow and a l <sup>2</sup> -nucleating agent. RSC Advances, 2014, 4, 14766-14776.                                                      | 3.6  | 38        |
| 264 | Crystalline Homopolyimides and Copolyimides Derived from 3,3',4,4'-Biphenyltetracarboxylic<br>Dianhydride/1,3-Bis(4-aminophenoxy)benzene/1,12-Dodecanediamine. 1. Materials, Preparation, and<br>Characterization. Macromolecules, 1995, 28, 6926-6930.  | 4.8  | 37        |
| 265 | Step-Cycle Mechanical Processing of Gels of sPP- <i>b</i> -EPR- <i>b</i> -sPP Triblock Copolymer in<br>Mineral Oil. Macromolecules, 2010, 43, 6782-6788.                                                                                                 | 4.8  | 37        |
| 266 | Phase Transitions in Prequenched Mesomorphic Isotactic Polypropylene during Heating and Annealing<br>Processes As Revealed by Simultaneous Synchrotron SAXS and WAXD Technique. Journal of Physical<br>Chemistry B, 2012, 116, 147-153.                  | 2.6  | 37        |
| 267 | Dynamic Study of Crystallization- and Melting-Induced Phase Separation in PEEK/PEKK Blends.<br>Macromolecules, 1997, 30, 4544-4550.                                                                                                                      | 4.8  | 36        |
| 268 | Poly(ethylene oxide) Crystal Orientation Changes in an Inverse Hexagonal Cylindrical Phase<br>Morphology Constructed by a Poly(ethylene oxide)-block-polystyrene Diblock Copolymer.<br>Macromolecules, 2007, 40, 526-534.                                | 4.8  | 36        |
| 269 | Chain Dynamics and Strain-Induced Crystallization of Pre- and Postvulcanized Natural Rubber Latex<br>Using Proton Multiple Quantum NMR and Uniaxial Deformation by <i>in Situ</i> Synchrotron X-ray<br>Diffraction. Macromolecules, 2012, 45, 6491-6503. | 4.8  | 36        |
| 270 | Carbon nanotube surface-induced crystallization of polyethylene terephthalate (PET). Polymer, 2014, 55, 642-650.                                                                                                                                         | 3.8  | 36        |

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Improvement of meltdown temperature of lithium-ion battery separator using electrospun polyethersulfone membranes. Polymer, 2016, 107, 163-169.                                                                                                     | 3.8 | 36        |
| 272 | Integrated dynamic wet spinning of core-sheath hydrogel fibers for optical-to-brain/tissue communications. National Science Review, 2021, 8, nwaa209.                                                                                               | 9.5 | 36        |
| 273 | Crystalline Homopolyimides and Copolyimides Derived from 3,3â€,4,4â€-Biphenyltetracarboxylic<br>Dianhydride/1,3-Bis(4-aminophenoxy)benzene/1,12-Dodecanediamine. 2. Crystallization, Melting, and<br>Morphology. Macromolecules, 1996, 29, 135-142. | 4.8 | 35        |
| 274 | In-Situ Synchrotron WAXD/SAXS Studies of Structural Development during PBO/PPA Solution Spinning. Macromolecules, 2002, 35, 433-439.                                                                                                                | 4.8 | 35        |
| 275 | Self-reinforced polyethylene blend for artificial joint application. Journal of Materials Chemistry B, 2014, 2, 971.                                                                                                                                | 5.8 | 35        |
| 276 | Insight into unique deformation behavior of oriented isotactic polypropylene with branched shish-kebabs. Polymer, 2015, 60, 274-283.                                                                                                                | 3.8 | 35        |
| 277 | A.C. dielectric and TSC studies of constrained amorphous motions in flexible polymers including poly(oxymethylene) and miscible blends. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 2121-2132.                                   | 2.1 | 33        |
| 278 | DETERMINATION OF CRYSTALLINE LAMELLAR THICKNESS IN POLY(ETHYLENE TEREPHTHALATE) USING<br>SMALL-ANGLE X-RAY SCATTERING AND TRANSMISSION ELECTRON MICROSCOPY*. Journal of<br>Macromolecular Science - Physics, 2001, 40, 625-638.                     | 1.0 | 33        |
| 279 | Crystallization of Polystyrene-block-[Syndiotactic Poly(propylene)] Block Copolymers from<br>Confinement to Breakout. Macromolecular Rapid Communications, 2005, 26, 107-111.                                                                       | 3.9 | 33        |
| 280 | Large Scale Production of Continuous Hydrogel Fibers with Anisotropic Swelling Behavior by<br>Dynamic rosslinking‧pinning. Macromolecular Rapid Communications, 2016, 37, 1795-1801.                                                                | 3.9 | 33        |
| 281 | Enhanced pervaporation performance of polyamide membrane with synergistic effect of porous nanofibrous support and trace graphene oxide lamellae. Chemical Engineering Science, 2019, 196, 265-276.                                                 | 3.8 | 33        |
| 282 | Crystal Structure, Morphology, and Phase Transitions in Aromatic Polyimide Oligomers. 1.<br>Poly(4,4'-oxydiphenylene pyromellitimide). Macromolecules, 1994, 27, 989-996.                                                                           | 4.8 | 32        |
| 283 | Competition between liquid crystallinity and block copolymerself-assembly in core–shell rod–coil<br>block copolymers. Soft Matter, 2008, 4, 458-461.                                                                                                | 2.7 | 32        |
| 284 | Phase Behavior of Neat Triblock Copolymers and Copolymer/Homopolymer Blends Near Network Phase<br>Windows. Macromolecules, 2010, 43, 9039-9048.                                                                                                     | 4.8 | 32        |
| 285 | Time-Resolved Synchrotron X-ray Scattering Study on Propylene–1-Butylene Random Copolymer<br>Subjected to Uniaxial Stretching at High Temperatures. Macromolecules, 2012, 45, 951-961.                                                              | 4.8 | 32        |
| 286 | Effects of degumming conditions on electro-spinning rate of regenerated silk. International Journal of Biological Macromolecules, 2013, 61, 50-57.                                                                                                  | 7.5 | 32        |
| 287 | Crystallization study of a thermoplastic polyimide (new-TPI). Journal of Polymer Science, Part B:<br>Polymer Physics, 1994, 32, 737-747.                                                                                                            | 2.1 | 31        |
| 288 | Morphology development during isothermal crystallization. I. Isotactic and atactic polypropylene<br>blends. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 2580-2590.                                                               | 2.1 | 31        |

| #   | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 289 | Title is missing!. Journal of Materials Science, 2001, 36, 3071-3077.                                                                                                                                                        | 3.7  | 31        |
| 290 | Shearâ€Induced Orientation and Structure Development in Isotactic Polypropylene Melt Containing<br>Modified Carbon Nanofibers. Journal of Macromolecular Science - Physics, 2006, 45, 247-261.                               | 1.0  | 31        |
| 291 | Small-angle X-ray scattering study of intramuscular fish bone: collagen fibril superstructure<br>determined from equidistant meridional reflections. Journal of Applied Crystallography, 2008, 41,<br>252-261.               | 4.5  | 31        |
| 292 | A Springâ€Like Behavior of Chiral Block Copolymer with Helical Nanostructure Driven by<br>Crystallization. Advanced Functional Materials, 2009, 19, 448-459.                                                                 | 14.9 | 31        |
| 293 | Polypentadecalactone prepared by lipase catalysis: crystallization kinetics and morphology. Polymer<br>International, 2009, 58, 944-953.                                                                                     | 3.1  | 31        |
| 294 | Characterization of nanoclay orientation in polymer nanocomposite film by small-angle X-ray scattering. Polymer, 2010, 51, 5255-5266.                                                                                        | 3.8  | 31        |
| 295 | Crystallization of poly(aryl ether ketone ketone) copolymers containing terephthalate/isophthalate<br>moieties. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 2585-2594.                                    | 2.1  | 30        |
| 296 | Structure and morphology development in syndiotactic polypropylene during isothermal<br>crystallization and subsequent melting. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39,<br>2982-2995.                 | 2.1  | 30        |
| 297 | Pathway-Dependent Melting in a Low-Molecular-Weight Polyethylene-block-Poly(ethylene oxide)<br>Diblock Copolymer. Macromolecular Rapid Communications, 2004, 25, 853-857.                                                    | 3.9  | 30        |
| 298 | Thermal stability of shear-induced precursor structures in isotactic polypropylene by rheo-X-ray<br>techniques with couette flow geometry. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44,<br>3553-3570.      | 2.1  | 30        |
| 299 | Surface Modification of Nanoclays by Catalytically Active Transition Metal Ions. Langmuir, 2007, 23, 9808-9815.                                                                                                              | 3.5  | 30        |
| 300 | An in-situ X-ray scattering study during uniaxial stretching of ionic liquid/ultra-high molecular<br>weight polyethylene blends. Polymer, 2011, 52, 4610-4618.                                                               | 3.8  | 30        |
| 301 | Micro-nano structure nanofibrous p-sulfonatocalix[8]arene complex membranes for highly efficient<br>and selective adsorption of lanthanum( <scp>iii</scp> ) ions in aqueous solution. RSC Advances, 2015, 5,<br>21178-21188. | 3.6  | 30        |
| 302 | Rice husk based nanocellulose scaffolds for highly efficient removal of heavy metal ions from contaminated water. Environmental Science: Water Research and Technology, 2020, 6, 3080-3090.                                  | 2.4  | 30        |
| 303 | Effect of miscible polymer diluents on the development of lamellar morphology in poly(oxymethylene)<br>blends. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 3115-3122.                                     | 2.1  | 29        |
| 304 | Manipulating the microstructure and rheology in polymer-organoclay composites. Polymer<br>Engineering and Science, 2002, 42, 1841-1851.                                                                                      | 3.1  | 29        |
| 305 | Probing Flow-Induced Precursor Structures in Blown Polyethylene Films by Synchrotron X-rays<br>during Constrained Melting. Macromolecules, 2005, 38, 5128-5136.                                                              | 4.8  | 29        |
| 306 | Stabilizing Thin Film Polymer Bilayers against Dewetting Using Multiwalled Carbon Nanotubes.<br>Macromolecules, 2007, 40, 9510-9516.                                                                                         | 4.8  | 29        |

| #   | ARTICLE                                                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Ultra-strong, tough and high wear resistance high-density polyethylene for structural engineering application: A facile strategy towards using the combination of extensional dynamic oscillatory shear flow and ultra-high-molecular-weight polyethylene. Composites Science and Technology, 2018, 167, 301-312. | 7.8 | 29        |
| 308 | A study of TiO <sub>2</sub> nanocrystal growth and environmental remediation capability of<br>TiO <sub>2</sub> /CNC nanocomposites. RSC Advances, 2019, 9, 40565-40576.                                                                                                                                           | 3.6 | 29        |
| 309 | Hierarchical Assembly of Nanocellulose into Filaments by Flow-Assisted Alignment and Interfacial<br>Complexation: Conquering the Conflicts between Strength and Toughness. ACS Applied Materials<br>& Interfaces, 2020, 12, 32090-32098.                                                                          | 8.0 | 29        |
| 310 | In situ WAXD study of structure changes during uniaxial deformation of ethylene-based semicrystalline ethylene–propylene copolymer. Polymer, 2006, 47, 2884-2893.                                                                                                                                                 | 3.8 | 28        |
| 311 | Wide-Angle X-ray Scattering Study on Shear-Induced Crystallization of Propylene-1-Butylene Random<br>Copolymer: Experiment and Diffraction Pattern Simulation. Macromolecules, 2011, 44, 558-565.                                                                                                                 | 4.8 | 28        |
| 312 | Control of structure and morphology of highly aligned PLLA ultrafine fibers via linear-jet electrospinning. Polymer, 2013, 54, 6045-6051.                                                                                                                                                                         | 3.8 | 28        |
| 313 | Nanoparticle–Nanofibrous Membranes as Scaffolds for Flexible Sweat Sensors. ACS Sensors, 2016, 1,<br>1060-1069.                                                                                                                                                                                                   | 7.8 | 28        |
| 314 | Operation of proton exchange membrane (PEM) fuel cells using natural cellulose fiber membranes.<br>Sustainable Energy and Fuels, 2019, 3, 2725-2732.                                                                                                                                                              | 4.9 | 28        |
| 315 | Time-resolved isothermal crystallization of absorbable PGA-co-PLA copolymer by synchrotron small-angle X-ray scattering and wide-angle X-ray diffraction. Polymer, 2001, 42, 8965-8973.                                                                                                                           | 3.8 | 27        |
| 316 | Acceleration or retardation to crystallization if liquid–liquid phase separation occurs: Studies on a polyolefin blend by SAXS/WAXD, DSC and TEM. Polymer, 2007, 48, 6668-6680.                                                                                                                                   | 3.8 | 27        |
| 317 | Crystal Morphology and Phase Identifications in Poly(aryl ether ketone)s and Their Copolymers. 2.<br>Poly(oxy-1,4-phenylenecarbonyl-1,3-phenylenecarbonyl-1,4-phenylenene). Macromolecules, 1994, 27,<br>5787-5793.                                                                                               | 4.8 | 26        |
| 318 | Miscibility and phase properties of poly(aryl ether ketone)s with three high temperature all-aromatic thermoplastic polyimides. Polymer, 1996, 37, 445-453.                                                                                                                                                       | 3.8 | 26        |
| 319 | Primary Nucleation in Polymer Crystallization. Macromolecular Rapid Communications, 2001, 22, 611-615.                                                                                                                                                                                                            | 3.9 | 26        |
| 320 | Structural and morphological development in poly(ethylene-co-hexene) and<br>poly(ethylene-co-butylene) blends due to the competition between liquid–liquid phase separation and<br>crystallization. Polymer, 2005, 46, 2675-2684.                                                                                 | 3.8 | 26        |
| 321 | Hierarchical Nanostructures of Bent-Core Molecules Blended with Poly(styrene-b-4-vinylpyridine)<br>Block Copolymer. Macromolecules, 2007, 40, 5095-5102.                                                                                                                                                          | 4.8 | 26        |
| 322 | Membrane Bioreactors for Nitrogen Removal from Wastewater: A Review. Journal of Environmental<br>Engineering, ASCE, 2020, 146, .                                                                                                                                                                                  | 1.4 | 26        |
| 323 | Cellulose nanofibrils and nanocrystals in confined flow: Single-particle dynamics to collective<br>alignment revealed through scanning small-angle x-ray scattering and numerical simulations.<br>Physical Review E, 2020, 101, 032610.                                                                           | 2.1 | 26        |
| 324 | Nitro-oxidized carboxycellulose nanofibers from moringa plant: effective bioadsorbent for mercury removal. Cellulose, 2021, 28, 8611-8628.                                                                                                                                                                        | 4.9 | 26        |

| #   | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | Simple on-line x-ray setup to monitor structural changes during fiber processing. Journal of Applied<br>Polymer Science, 1996, 62, 2061-2068.                                                                                          | 2.6 | 25        |
| 326 | Aligned and molecularly oriented semihollow ultrafine polymer fiber yarns by a facile method.<br>Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1118-1125.                                                             | 2.1 | 25        |
| 327 | Spatial Distribution of γ-Crystals in Metallocene-Made Isotactic Polypropylene Crystallized under<br>Combined Thermal and Flow Fields. Journal of Physical Chemistry B, 2010, 114, 6806-6816.                                          | 2.6 | 25        |
| 328 | High-performance nanofibrous membrane for removal of Cr(VI) from contaminated water. Journal of<br>Plastic Film and Sheeting, 2015, 31, 379-400.                                                                                       | 2.2 | 25        |
| 329 | Synthesis and Characterization of a High Flux Nanocellulose–Cellulose Acetate Nanocomposite<br>Membrane. Membranes, 2019, 9, 70.                                                                                                       | 3.0 | 25        |
| 330 | Heparinized thin-film composite membranes with sub-micron ridge structure for efficient hemodialysis. Journal of Membrane Science, 2020, 599, 117706.                                                                                  | 8.2 | 25        |
| 331 | Crystallization and phase behavior in nylon 6/aromatic polyimide triblock copolymers.<br>Macromolecular Chemistry and Physics, 1998, 199, 1107-1118.                                                                                   | 2.2 | 24        |
| 332 | Synchrotron SAXS/WAXD and rheological studies of clay suspensions in silicone fluid. Journal of Colloid and Interface Science, 2003, 266, 339-345.                                                                                     | 9.4 | 24        |
| 333 | Polymer nanocomposites based on transition metal ion modified organoclays. Polymer, 2007, 48, 827-840.                                                                                                                                 | 3.8 | 24        |
| 334 | Structure Development during Stretching and Heating of Isotactic Propylene–1-Butylene Random<br>Copolymer: From Unit Cells to Lamellae. Macromolecules, 2012, 45, 7061-7071.                                                           | 4.8 | 24        |
| 335 | Biomimetic Nanofibrillation in Two-Component Biopolymer Blends with Structural Analogs to Spider<br>Silk. Scientific Reports, 2016, 6, 34572.                                                                                          | 3.3 | 24        |
| 336 | Super-hydrophobic polyurethane sponges for oil absorption. Separation Science and Technology, 2017, 52, 221-227.                                                                                                                       | 2.5 | 24        |
| 337 | Interpenetrating Nanofibrous Composite Membranes for Water Purification. ACS Applied Nano<br>Materials, 2019, 2, 3606-3614.                                                                                                            | 5.0 | 24        |
| 338 | Reinforcement of Natural Rubber Latex Using Jute Carboxycellulose Nanofibers Extracted Using<br>Nitro-Oxidation Method. Nanomaterials, 2020, 10, 706.                                                                                  | 4.1 | 24        |
| 339 | Morphology development during isothermal crystallization. II. Isotactic and syndiotactic polypropylene blends. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 1876-1888.                                               | 2.1 | 23        |
| 340 | Time-resolved crystallization study of absorbable polymers by synchrotron small-angle X-ray scattering. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 153-167.                                                        | 2.1 | 23        |
| 341 | Combined techniques of Raman spectroscopy and synchrotron two-dimensional x-ray diffraction forin situstudy of anisotropic system: Example of polymer fibers under deformation. Review of Scientific Instruments, 2003, 74, 3087-3092. | 1.3 | 22        |
| 342 | Deformation behavior of oriented β-crystals in injection-molded isotactic polypropylene by in situ X-ray scattering. Polymer, 2016, 84, 254-266.                                                                                       | 3.8 | 22        |

| #   | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 343 | Nanocomposite Film Containing Fibrous Cellulose Scaffold and Ag/TiO2 Nanoparticles and Its Antibacterial Activity. Polymers, 2018, 10, 1052.                                                                                                             | 4.5 | 22        |
| 344 | Nanostructure Evolution of Isotropic High-Pressure Injection-Molded UHMWPE during Heating.<br>Macromolecules, 2002, 35, 2200-2206.                                                                                                                       | 4.8 | 21        |
| 345 | Trilayer Crystalline Lamellar Morphology under Confinement. Macromolecules, 2006, 39, 2739-2742.                                                                                                                                                         | 4.8 | 21        |
| 346 | Synchrotron X-Ray Studies of Vulcanized Rubbers and Thermoplastic Elastomers. Rubber Chemistry and Technology, 2006, 79, 460-488.                                                                                                                        | 1.2 | 21        |
| 347 | The role of multi-walled carbon nanotubes in shear enhanced crystallization of isotactic poly(1-butene). Journal of Thermal Analysis and Calorimetry, 2009, 98, 611-622.                                                                                 | 3.6 | 21        |
| 348 | Orientated crystallization in discontinuous aramid fiber/isotactic polypropylene composites under shear flow conditions. Journal of Applied Polymer Science, 2005, 98, 1113-1118.                                                                        | 2.6 | 20        |
| 349 | Lamellar nanostructure in 'Somasif'-based organoclays. Clays and Clay Minerals, 2007, 55, 140-150.                                                                                                                                                       | 1.3 | 20        |
| 350 | Influence of LC Content on the Phase Structures of Side-Chain Liquid Crystalline Block Copolymers with Bent-Core Mesogens. Macromolecules, 2009, 42, 3510-3517.                                                                                          | 4.8 | 20        |
| 351 | Morphological and property investigations of carboxylated cellulose nanofibers extracted from different biological species. Cellulose, 2015, 22, 3127-3135.                                                                                              | 4.9 | 20        |
| 352 | Fabrication of cellulose nanofiberâ€based ultrafiltration membranes by spray coating approach. Journal of Applied Polymer Science, 2017, 134, .                                                                                                          | 2.6 | 20        |
| 353 | Nanostructured all-cellulose membranes for efficient ultrafiltration of wastewater. Journal of Membrane Science, 2022, 650, 120422.                                                                                                                      | 8.2 | 20        |
| 354 | Miscibility of three different poly(aryl ether ketones) with a high melting thermoplastic polyimide.<br>Polymer, 1993, 34, 3315-3318.                                                                                                                    | 3.8 | 19        |
| 355 | In situ synchrotron SAXS/WAXD studies during melt spinning of modified carbon nanofiber and isotactic polypropylene nanocomposite. Colloid and Polymer Science, 2004, 282, 802-809.                                                                      | 2.1 | 19        |
| 356 | Enhanced anti-fouling performance in Membrane Bioreactors using a novel cellulose nanofiber-coated membrane. Separation and Purification Technology, 2021, 275, 119145.                                                                                  | 7.9 | 19        |
| 357 | Lattice Deformation of Strain-induced Crystallites in Carbon-filled Natural Rubber. Chemistry Letters, 2004, 33, 220-221.                                                                                                                                | 1.3 | 18        |
| 358 | Rupture, orientation and strain-induced crystallization of polymer chain and network in vulcanized<br>polyisoprene during uniaxial deformation by in-situ Electron Spin Resonance (ESR) and synchrotron<br>X-ray analysis. Polymer, 2011, 52, 2453-2459. | 3.8 | 18        |
| 359 | Morphology and Flow Behavior of Cellulose Nanofibers Dispersed in Glycols. Macromolecules, 2019, 52, 5499-5509.                                                                                                                                          | 4.8 | 18        |
| 360 | Structural characterization of carboxyl cellulose nanofibers extracted from underutilized sources.<br>Science China Technological Sciences, 2019, 62, 971-981.                                                                                           | 4.0 | 18        |

| #   | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 361 | Surfaceâ€Mediated Interconnections of Nanoparticles in Cellulosic Fibrous Materials toward 3D<br>Sensors. Advanced Materials, 2020, 32, e2002171.                                                                                         | 21.0 | 18        |
| 362 | Sustainable carboxylated cellulose filters for efficient removal and recovery of lanthanum.<br>Environmental Research, 2020, 188, 109685.                                                                                                 | 7.5  | 18        |
| 363 | Confined Discotic Liquid Crystalline Self-Assembly in a Novel Coilâ^'Coilâ^'Disk Triblock Oligomer.<br>Macromolecules, 2005, 38, 3386-3394.                                                                                               | 4.8  | 17        |
| 364 | Relationship between structure and dynamic mechanical properties of a carbon nanofiber reinforced elastomeric nanocomposite. Polymer, 2006, 47, 6797-6807.                                                                                | 3.8  | 17        |
| 365 | Small-angle X-ray study of the three-dimensional collagen/mineral superstructure in intramuscular<br>fish bone. Journal of Applied Crystallography, 2007, 40, s666-s668.                                                                  | 4.5  | 17        |
| 366 | Suppressing of Î <sup>3</sup> -Crystal Formation in Metallocene-Based Isotactic Polypropylene during Isothermal<br>Crystallization under Shear Flow. Journal of Physical Chemistry B, 2012, 116, 5056-5063.                               | 2.6  | 17        |
| 367 | Crystalline Structure Changes in Preoriented Metallocene-Based Isotactic Polypropylene upon<br>Annealing. Journal of Physical Chemistry B, 2013, 117, 7113-7122.                                                                          | 2.6  | 17        |
| 368 | Improving toughness of ultra-high molecular weight polyethylene with ionic liquid modified carbon nanofiber. Polymer, 2014, 55, 160-165.                                                                                                  | 3.8  | 17        |
| 369 | Structure and permeability relationships in polymer nanocomposites containing carbon black and organoclay. Polymer, 2015, 64, 19-28.                                                                                                      | 3.8  | 17        |
| 370 | Modification of carbon nanotubes with fluorinated ionic liquid for improving processability of fluoro-ethylene-propylene. European Polymer Journal, 2017, 87, 398-405.                                                                    | 5.4  | 17        |
| 371 | Ionic Cross-Linked Poly(acrylonitrile- <i>co</i> -acrylic acid)/Polyacrylonitrile Thin Film Nanofibrous<br>Composite Membrane with High Ultrafiltration Performance. Industrial & Engineering Chemistry<br>Research, 2017, 56, 3077-3090. | 3.7  | 17        |
| 372 | High-flux anti-fouling nanofibrous composite ultrafiltration membranes containing negatively charged water channels. Journal of Membrane Science, 2020, 612, 118382.                                                                      | 8.2  | 17        |
| 373 | Time-resolved simultaneous SAXS/WAXS studies of peek during isothermal crystallization, melting, and subsequent cooling. Journal of Macromolecular Science - Physics, 1998, 37, 667-682.                                                  | 1.0  | 16        |
| 374 | Inducing Order from Disordered Copolymers: On Demand Generation of Triblock Morphologies<br>Including Networks. Macromolecules, 2012, 45, 4599-4605.                                                                                      | 4.8  | 16        |
| 375 | Copolymer modification of nylon-6,6 with 2-methylpentamethylenediamine. Polymer, 1996, 37, 1217-1228.                                                                                                                                     | 3.8  | 15        |
| 376 | Morphological Changes during the Annealing of Polybutene-1 Fiber. Macromolecules, 2001, 34, 2008-2011.                                                                                                                                    | 4.8  | 15        |
| 377 | Flow-induced crystallization precursor structure in high molecular weight isotactic polypropylene<br>(HMW-iPP)/low molecular weight linear low density polyethylene (LMW-LLDPE) binary blends. Polymer,<br>2013, 54, 1425-1431.           | 3.8  | 15        |
| 378 | A novel way to monitor the sequential destruction of parent-daughter crystals in isotactic polypropylene under uniaxial tension. Journal of Materials Science, 2014, 49, 3016-3024.                                                       | 3.7  | 15        |

| #   | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 379 | Probing structure and orientation in polymers using synchrotron small- and wide-angle X-ray scattering techniques. European Polymer Journal, 2016, 81, 433-446.                                                                             | 5.4  | 15        |
| 380 | Decoration of Nanofibrous Paper Chemiresistors with Dendronized Nanoparticles toward<br>Structurally Tunable Negativeâ€Going Response Characteristics to Human Breathing and Sweating.<br>Advanced Materials Interfaces, 2017, 4, 1700380.  | 3.7  | 15        |
| 381 | Enhancing Dehydration Performance of Isopropanol by Introducing Intermediate Layer into Sodium<br>Alginate Nanofibrous Composite Pervaporation Membrane. Advanced Fiber Materials, 2019, 1, 137-151.                                        | 16.1 | 15        |
| 382 | Study of a thermotropic liquid-crystalline polyester at elevated pressures. Journal of Polymer<br>Science, Part B: Polymer Physics, 1990, 28, 189-202.                                                                                      | 2.1  | 14        |
| 383 | Reversible De-Intercalation and Intercalation Induced by Polymer Crystallization and Melting in a Poly(ethylene oxide)/Organoclay Nanocomposite. Langmuir, 2005, 21, 5672-5676.                                                             | 3.5  | 14        |
| 384 | DEPENDENCE OF THE ONSET OF STRAIN-INDUCED CRYSTALLIZATION OF NATURAL RUBBER AND ITS SYNTHETIC ANALOGUE ON CROSSLINK AND ENTANGLEMENT BY USING SYNCHROTRON X-RAY. Rubber Chemistry and Technology, 2017, 90, 728-742.                        | 1.2  | 14        |
| 385 | An unusual promotion of γ-crystals in metallocene-made isotactic polypropylene from orientational relaxation and favorable temperature window induced by shear. Polymer, 2018, 134, 196-203.                                                | 3.8  | 14        |
| 386 | Influences of tacticity and molecular weight on crystallization kinetic and crystal morphology under isothermal crystallization: Evidence of tapering in lamellar width. Polymer, 2019, 172, 41-51.                                         | 3.8  | 14        |
| 387 | Crystal structure changes during isothermal crystallization, cooling and heating of linear polyethylene. Journal of Polymer Research, 1999, 6, 167-173.                                                                                     | 2.4  | 13        |
| 388 | Chain-Folding and Overall Molecular Conformation in a Novel Amphiphilic Starlike Macromolecule.<br>Macromolecules, 2005, 38, 7074-7082.                                                                                                     | 4.8  | 13        |
| 389 | Sequence distribution and elastic properties of propylene-based elastomers. Polymer, 2017, 111, 115-122.                                                                                                                                    | 3.8  | 13        |
| 390 | The influence of short chain branch on formation of shear induced crystals in bimodal polyethylene<br>at high shear temperatures. European Polymer Journal, 2018, 105, 359-369.                                                             | 5.4  | 13        |
| 391 | Electrospun Nanofibrous Membranes for Desalination. , 2019, , 81-104.                                                                                                                                                                       |      | 13        |
| 392 | Morphological Changes During Crystallization and Melting of Polyoxymethylene Studied by<br>Synchrotron X-Ray Scattering and Modulated Differential Scanning Calorimetry. Journal of<br>Macromolecular Science - Physics, 2000, 39, 519-543. | 1.0  | 12        |
| 393 | A Synchrotron WAXD Study on the Early Stages of Coagulation during PBO Fiber Spinning.<br>Macromolecules, 2002, 35, 9851-9853.                                                                                                              | 4.8  | 12        |
| 394 | Structure and morphology development during deformation of propylene based ethylene–propylene copolymer and its blends with isotactic polypropylene. Polymer, 2003, 44, 2385-2392.                                                          | 3.8  | 12        |
| 395 | Uniaxial Deformation of Nylon 6–Clay Nanocomposites by In-Situ Synchrotron X-Ray Measurements.<br>Journal of Macromolecular Science - Physics, 2003, 42, 201-214.                                                                           | 1.0  | 12        |
| 396 | Development of Multiple-Jet Electrospinning Technology. ACS Symposium Series, 2006, , 91-105.                                                                                                                                               | 0.5  | 12        |

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 397 | The role of high molecular weight chains in flow-induced crystallization precursor structures.<br>Journal of Physics Condensed Matter, 2006, 18, S2421-S2436.                                                                                 | 1.8 | 12        |
| 398 | Structure Evolution upon Uniaxial Drawing Skin―and Coreâ€Layers of Injectionâ€Molded Isotactic<br>Polypropylene by <i>In Situ</i> Synchrotron Xâ€ray Scattering. Journal of Polymer Science, Part B:<br>Polymer Physics, 2013, 51, 1618-1631. | 2.1 | 12        |
| 399 | Effects of molecular geometry on the self-assembly of giant polymer–dendron conjugates in condensed state. Soft Matter, 2014, 10, 3200.                                                                                                       | 2.7 | 12        |
| 400 | A Criterion for Flowâ€Induced Oriented Crystals in Isotactic Polypropylene under Pressure.<br>Macromolecular Rapid Communications, 2017, 38, 1700407.                                                                                         | 3.9 | 12        |
| 401 | The influence of short chain branch on formation of shishâ€kebab crystals in bimodal polyethylene<br>under shear at high temperatures. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56,<br>786-794.                             | 2.1 | 12        |
| 402 | Solvent induced phase separation in a nylon 6-b-polyimide-b-nylon 6 triblock copolymer. Journal of<br>Polymer Research, 1997, 4, 1-7.                                                                                                         | 2.4 | 11        |
| 403 | A new pathway for developingin vitronanostructured non-viral gene carriers. Journal of Physics<br>Condensed Matter, 2006, 18, S2513-S2525.                                                                                                    | 1.8 | 11        |
| 404 | Crystallization behavior of isotactic propyleneâ€1â€hexene random copolymer revealed by timeâ€resolved<br>SAXS/WAXD techniques. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 26-32.                                         | 2.1 | 11        |
| 405 | Nanocellulose Extracted from Defoliation of Ginkgo Leaves. MRS Advances, 2018, 3, 2077-2088.                                                                                                                                                  | 0.9 | 11        |
| 406 | Nitro-oxidized carboxylated cellulose nanofiber based nanopapers and their PEM fuel cell performance. Sustainable Energy and Fuels, 2022, 6, 3669-3680.                                                                                       | 4.9 | 11        |
| 407 | Structural and Morphological Inhomogeneity of Short-Chain Branched Polyethylenes in Multiple-Step<br>Crystallization. Journal of Macromolecular Science - Physics, 2000, 39, 317-331.                                                         | 1.0 | 10        |
| 408 | Salt-Induced Polymer Gelation and Formation of Nanocrystals in a Polymerâ^'Salt System. Langmuir, 2002, 18, 10402-10406.                                                                                                                      | 3.5 | 10        |
| 409 | Fabrication of Micro-Nano Structure Nanofibers by Solvent Etching. Journal of Nanoscience and Nanotechnology, 2011, 11, 6919-6925.                                                                                                            | 0.9 | 10        |
| 410 | Polymeric nanofibrous composite membranes for energy efficient ethanol dehydration. Journal of<br>Renewable and Sustainable Energy, 2012, 4, .                                                                                                | 2.0 | 10        |
| 411 | Microstructure and mechanical properties of isotactic polypropylene composite with twoâ€scale reinforcement. Polymers for Advanced Technologies, 2012, 23, 1580-1589.                                                                         | 3.2 | 10        |
| 412 | Current Advances on Nanofiber Membranes for Water Purification Applications. , 2018, , 25-46.                                                                                                                                                 |     | 10        |
| 413 | The influence of short chain branch on formation of shear-induced crystals in bimodal polyethylene at low shear temperatures. Polymer, 2019, 179, 121625.                                                                                     | 3.8 | 9         |
| 414 | Ordering kinetics of body-centered-cubic morphology in diblock copolymer solutions at low temperatures. Journal of Rheology, 2004, 48, 1389-1405.                                                                                             | 2.6 | 8         |

| #   | Article                                                                                                                                                                                                       | IF                | CITATIONS          |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 415 | Rheological Properties of Jute-Based Cellulose Nanofibers under Different Ionic Conditions. ACS Symposium Series, 2017, , 113-132.                                                                            | 0.5               | 8                  |
| 416 | Functionalized bioâ€adsorbents for removal of perfluoroalkyl substances: A perspective. AWWA Water<br>Science, 2021, 3, .                                                                                     | 2.1               | 8                  |
| 417 | Anomalous two-stage spherulite growth in poly(aryl ether ketones) during isothermal<br>crystallization. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 3095-3105.                             | 2.1               | 7                  |
| 418 | Crystallization study of poly(ether ether ketone)/poly(ether imide) blends by real-time small-angle<br>x-ray scattering. Journal of Macromolecular Science - Physics, 1998, 37, 365-374.                      | 1.0               | 7                  |
| 419 | Probing the flow-induced shish-kebab structure in entangled polyethylene melts by synchrotron X-ray scattering. Journal of Applied Crystallography, 2006, 40, s48-s51.                                        | 4.5               | 7                  |
| 420 | Sulfonylcalix[4]arene functionalized nanofiber membranes for effective removal and selective fluorescence recognition of terbium( <scp>iii</scp> ) ions. New Journal of Chemistry, 2018, 42, 6191-6202.       | 2.8               | 7                  |
| 421 | Remediation of UO <sub>2</sub> <sup>2+</sup> from Water by Nitro-Oxidized Carboxycellulose<br>Nanofibers: Performance and Mechanism. ACS Symposium Series, 2020, , 269-283.                                   | 0.5               | 7                  |
| 422 | Electrospun Nanofibrous Adsorption Membranes for Wastewater Treatment: Mechanical Strength<br>Enhancement. Chemical Research in Chinese Universities, 2021, 37, 355-365.                                      | 2.6               | 7                  |
| 423 | Role of Chain Entanglement Network on Formation of Flow-Induced Crystallization Precursor Structure. , 2007, , 133-149.                                                                                       |                   | 7                  |
| 424 | Crystal Morphology and Phase Identification in Poly(Aryl Ether Ketone)s and Their Copolymers. 4.<br>Morphological Observations in PEKK with All p-Phenylene Linkages. Macromolecules, 1995, 28,<br>8855-8861. | 4.8               | 6                  |
| 425 | Synchrotron X-ray scattering studies of the nature of shear-induced shish-kebab structure in polyethylene melt. , 2005, , 114-126.                                                                            |                   | 6                  |
| 426 | The effect of comonomer content on structure and property relationship of propylene-1-octene copolymer during uniaxial stretching. Polymer, 2013, 54, 4545-4554.                                              | 3.8               | 6                  |
| 427 | Morphology and mechanical properties of heterophasic PP–EP/EVA/organoclay nanocomposites.<br>Journal of Applied Polymer Science, 2013, 128, 3473-3479.                                                        | 2.6               | 6                  |
| 428 | Nanoparticle Based Printed Sensors on Paper for Detecting Chemical Species. , 2017, , .                                                                                                                       |                   | 6                  |
| 429 | Shear induced crystallization of bimodal and unimodal high density polyethylene. Polymer, 2018, 153, 223-231.                                                                                                 | 3.8               | 6                  |
| 430 | Shear-free mixing to achieve accurate temporospatial nanoscale kinetics through scanning-SAXS:<br>ion-induced phase transition of dispersed cellulose nanocrystals. Lab on A Chip, 2021, 21, 1084-1095.       | 6.0               | 6                  |
| 431 | Nano-Filamented Textile Sensor Platform with High Structure Sensitivity. ACS Applied Materials &<br>Interfaces, 2022, 14, 15391-15400.                                                                        | 8.0               | 6                  |
| 432 | Time-resolved synchrotron X-ray study of crystalline phase transition in poly(aryl ether ketone) Tj ETQq0 0 0 rgE<br>Polymer Physics, 1995, 33, 2439-2447.                                                    | T /Overloc<br>2.1 | k 10 Tf 50 67<br>5 |

| #   | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 433 | Melt crystalfization and crystal morphology of two low molecular weight linear polyethylene fractions. Journal of Macromolecular Science - Physics, 1997, 36, 553-567.                                       | 1.0 | 5         |
| 434 | Crystal morphological investigation in thin films of poly(aryl ether ketone ketone) having a<br>meta-linkage. Polymer, 1997, 38, 5051-5058.                                                                  | 3.8 | 5         |
| 435 | Synchrotron Xâ€Ray scattering of polymer nanocomposites. Synchrotron Radiation News, 2002, 15, 20-34.                                                                                                        | 0.8 | 5         |
| 436 | Shear Enhanced Crystallization and Tensile Behaviors of Oscillation Shear Injection Molded<br>Poly(ethylene terephthalate). Journal of Macromolecular Science - Physics, 2010, 50, 383-397.                  | 1.0 | 5         |
| 437 | Development of internal fine structure in stretched rubber vulcanizates. Journal of Polymer Science,<br>Part B: Polymer Physics, 2011, 49, 1157-1162.                                                        | 2.1 | 5         |
| 438 | High-pressure crystallization of poly(lactic acid) with and without N2 atmosphere protection.<br>Journal of Materials Science, 2013, 48, 7374-7383.                                                          | 3.7 | 5         |
| 439 | The supramolecular structure of bone: X-ray scattering analysis and lateral structure modeling. Acta<br>Crystallographica Section D: Structural Biology, 2016, 72, 986-996.                                  | 2.3 | 5         |
| 440 | Comprehensive study on temperature-induced crystallisation and strain-induced crystallisation<br>behaviours of natural rubber/isoprene rubber blends. Plastics, Rubber and Composites, 2017, 46,<br>290-300. | 2.0 | 5         |
| 441 | Sequential Oxidation on Wood and Its Application in Pb2+ Removal from Contaminated Water.<br>Polysaccharides, 2021, 2, 245-256.                                                                              | 4.8 | 5         |
| 442 | Understanding ion-induced assembly of cellulose nanofibrillar gels through shear-free mixing and in situ scanning-SAXS. Nanoscale Advances, 2021, 3, 4940-4951.                                              | 4.6 | 5         |
| 443 | Study the Use of Activated Carbon and Bone Char on the Performance of Gravity Sand-Bag Water Filter. Membranes, 2021, 11, 868.                                                                               | 3.0 | 5         |
| 444 | Anomalous rheology in a nanostructured diblock copolymer/hydrocarbon system and its kinetic origin. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 1496-1505.                                | 2.1 | 4         |
| 445 | Deformation X-ray study of propylene-based elastomers with controlled sequence distributions.<br>Polymer, 2017, 122, 208-221.                                                                                | 3.8 | 4         |
| 446 | Colorful nanofibrous composite membranes by two-nozzle electrospinning. Materials Today<br>Communications, 2019, 21, 100643.                                                                                 | 1.9 | 4         |
| 447 | The Influence of Ethyl Branch on Formation of Shish-Kebab Crystals in Bimodal Polyethylene under<br>Shear at Low Temperature. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1050-1058.     | 3.8 | 4         |
| 448 | Electrospun Nanofibrous Membranes for Liquid Filtration. Nanostructure Science and Technology, 2014, , 325-354.                                                                                              | 0.1 | 3         |
| 449 | Shear-induced crystallization of unimodal/bimodal polyethylene at high temperatures affected by C4 short-branching. Polymer, 2021, 233, 124203.                                                              | 3.8 | 3         |
|     |                                                                                                                                                                                                              |     |           |

| #   | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 451 | The Effects of Temperature and Pressure on the Dynamic Longitudinal Volume Viscosity of Two Model<br>Polymers. Journal of Rheology, 1988, 32, 533-553.                                                                  | 2.6  | 2         |
| 452 | Crystallization and structure formation in polymer blends with strong intermodular interactions:<br>blends of poly(ethylene oxide) and styrene-hydroxystyrene copolymers. Macromolecular Symposia,<br>2003, 198, 29-40. | 0.7  | 2         |
| 453 | Deformation-Induced Structure Changes in Elastomeric Nanocomposites. Advanced Structured Materials, 2011, , 135-154.                                                                                                    | 0.5  | 2         |
| 454 | CHEMICAL APPLICATIONS OF SMALL ANGLE SCATTERING. Advanced Series in Physical Chemistry, 2002, , 799-849.                                                                                                                | 1.5  | 1         |
| 455 | Continuous Production of Hollow Hydrogel Fibers with Graphene Inner Wall. Materials Science Forum, 0, 898, 2197-2204.                                                                                                   | 0.3  | 1         |
| 456 | A thirst for advancement. Nature Materials, 2018, 17, 213-215.                                                                                                                                                          | 27.5 | 1         |
| 457 | Effect of Sorbitol Templates on the Preferential Crystallographic Growth of Isotactic Polypropylene<br>Wax. Crystals, 2018, 8, 59.                                                                                      | 2.2  | 1         |
| 458 | Crystal structural evolution of Polybutene-1 in solid state upon deformation and stress relaxation.<br>Polymer, 2021, 226, 123833.                                                                                      | 3.8  | 1         |
| 459 | Lamellar crystal-dominated surfaces of polymer films achieved <i>via</i> melt stretching-induced free surface crystallization. Soft Matter, 2021, 17, 10829-10838.                                                      | 2.7  | 1         |
| 460 | Microstructure and Phase Separation of Pekk, Pekk and their Blends. Materials Research Society<br>Symposia Proceedings, 1996, 461, 33.                                                                                  | 0.1  | 0         |
| 461 | Self-Bundling Electrospinning Method. , 2013, , 1-2.                                                                                                                                                                    |      | Ο         |
| 462 | Nanoclays. , 2013, , 1-2.                                                                                                                                                                                               |      | 0         |
| 463 | Benzyl-Modified Cellulose. , 2014, , 1-2.                                                                                                                                                                               |      | Ο         |
| 464 | Ultrafine Nanofibers. , 2016, , 1951-1953.                                                                                                                                                                              |      | 0         |
| 465 | Self-Bundling Electrospinning Method. , 2016, , 1762-1763.                                                                                                                                                              |      | Ο         |
| 466 | Nanocellulose in membrane technology for water purification. Separation Science and Technology, 2022, , 69-85.                                                                                                          | 0.2  | 0         |
| 467 | Plant-derived carboxycellulose: Highly efficient bionanomaterials for removal of toxic lead from contaminated water. Separation Science and Technology, 2022, , 87-95.                                                  | 0.2  | 0         |
| 468 | Nitro-oxidation process for fabrication of efficient bioadsorbent from lignocellulosic biomass by<br>combined liquid-gas phase treatment. Carbohydrate Polymer Technologies and Applications, 2022, 3,<br>100219.       | 2.6  | 0         |