Chryso Kanthou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11860157/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The influence of hypoxia and energy depletion on the response of endothelial cells to the vascular disrupting agent combretastatin A-4-phosphate. Scientific Reports, 2020, 10, 9926.	3.3	7
2	Debunking the Myth of the Endogenous Antiangiogenic Vegfaxxxb Transcripts. Trends in Endocrinology and Metabolism, 2020, 31, 398-409.	7.1	5
3	Targeting the vasculature of tumours: combining VEGF pathway inhibitors with radiotherapy. British Journal of Radiology, 2019, 92, 20180405.	2.2	12
4	Rational Design of Cholesterol Derivative for Improved Stability of Paclitaxel Cationic Liposomes. Pharmaceutical Research, 2018, 35, 90.	3.5	14
5	Evaluation of Sydnoneâ€Based Analogues of Combretastatin Aâ€4 Phosphate (CA4P) as Vascular Disrupting Agents for Use in Cancer Therapy. ChemMedChem, 2018, 13, 2618-2626.	3.2	7
6	The protective role of sphingosine-1-phosphate against the action of the vascular disrupting agent combretastatin A-4 3-O-phosphate. Oncotarget, 2017, 8, 95648-95661.	1.8	5
7	Topological Analysis of the Vasculature ofÂAngiopoietin-Expressing Tumours Through Scale-Space Tracing. Communications in Computer and Information Science, 2017, , 285-296.	0.5	0
8	Sydnone Cycloaddition Route to Pyrazole-Based Analogs of Combretastatin A4. Journal of Medicinal Chemistry, 2016, 59, 9473-9488.	6.4	44
9	Perioperative use of iloprost in cardiac surgery patients diagnosed with heparinâ€induced thrombocytopeniaâ€reactive antibodies or with true <scp>HIT</scp> (<scp>HIT</scp> â€reactive antibodies) Tj	ETQq110	.78/4314 rg8
10	Tumour Cells Expressing Single VEGF Isoforms Display Distinct Growth, Survival and Migration Characteristics. PLoS ONE, 2014, 9, e104015.	2.5	14
11	Influence of soluble or matrix-bound isoforms of vascular endothelial growth factor-A on tumor response to vascular-targeted strategies. International Journal of Cancer, 2013, 133, n/a-n/a.	5.1	11
12	Do Anti-Angiogenic VEGF (VEGFxxxb) Isoforms Exist? A Cautionary Tale. PLoS ONE, 2012, 7, e35231.	2.5	46
13	Vascular effects dominate solid tumor response to treatment with combretastatin Aâ€4â€phosphate. International Journal of Cancer, 2011, 129, 1979-1989.	5.1	32
14	Microtubule depolymerizing vascular disrupting agents: novel therapeutic agents for oncology and other pathologies. International Journal of Experimental Pathology, 2009, 90, 284-294.	1.3	175
15	Blood Vessel Maturation and Response to Vascular-Disrupting Therapy in Single Vascular Endothelial Growth Factor-A Isoform–Producing Tumors. Cancer Research, 2008, 68, 2301-2311.	0.9	92
16	Vascular Disrupting Agents in Cancer Therapy. , 2008, , 809-829.		1
17	Selective destruction of the tumour vasculature by targeting the endothelial cytoskeleton. Drug Discovery Today: Therapeutic Strategies, 2007, 4, 237-243.	0.5	6
18	Radiation Effects on the Cytoskeleton of Endothelial Cells and Endothelial Monolayer Permeability. International Journal of Radiation Oncology Biology Physics, 2007, 69, 1553-1562.	0.8	75

CHRYSO KANTHOU

#	Article	IF	CITATIONS
19	Tumour targeting by microtubule-depolymerising vascular disrupting agents. Expert Opinion on Therapeutic Targets, 2007, 11, 1443-1457.	3.4	71
20	The endothelial cytoskeleton as a target of electroporation-based therapies. Molecular Cancer Therapeutics, 2006, 5, 3145-3152.	4.1	106
21	Anti-vascular agent Combretastatin A-4-P modulates Hypoxia Inducible Factor-1 and gene expression. BMC Cancer, 2006, 6, 280.	2.6	33
22	Disrupting tumour blood vessels. Nature Reviews Cancer, 2005, 5, 423-435.	28.4	867
23	The Tubulin-Binding Agent Combretastatin A-4-Phosphate Arrests Endothelial Cells in Mitosis and Induces Mitotic Cell Death. American Journal of Pathology, 2004, 165, 1401-1411.	3.8	125
24	The vascular targeting agent combretastatin A-4-phosphate induces neutrophil recruitment to endothelial cells in vitro. Anticancer Research, 2003, 23, 3199-206.	1.1	13
25	The tumor vascular targeting agent combretastatin A–4-phosphate induces reorganization of the actin cytoskeleton and early membrane blebbing in human endothelial cells. Blood, 2002, 99, 2060-2069.	1.4	270
26	Mechanisms of cytotoxicity induced by horseradish peroxidase/indole-3-acetic acid gene therapy. Journal of Cellular Biochemistry, 2002, 87, 221-232.	2.6	27
27	The biology of the combretastatins as tumour vascular targeting agents. International Journal of Experimental Pathology, 2002, 83, 21-38.	1.3	292
28	Expression of vascular endothelial growth factor receptors in smooth muscle cells. Journal of Cellular Physiology, 2001, 188, 359-368.	4.1	198
29	The anticoagulant factor, protein S, is produced by cultured human vascular smooth muscle cells and its expression is up-regulated by thrombin. Blood, 2000, 95, 2008-2014.	1.4	40
30	Cellular Effects and Signalling Pathways Activated by the Anti-Coagulant Factor, Protein S, in Vascular Cells. Advances in Experimental Medicine and Biology, 2000, 476, 155-166.	1.6	12
31	Cellular and Molecular Effects of Thrombin in the Vascular System. , 1998, , 263-282.		2
32	Induction of Vascular SMC Proliferation by Urokinase Indicates a Novel Mechanism of Action in Vasoproliferative Disorders. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 2848-2854.	2.4	76
33	Involvement of Pertussis toxin-sensitive and -insensitive G proteins in α-thrombin signalling on cultured human vascular smooth muscle cells. Cellular Signalling, 1996, 8, 59-66.	3.6	27
34	Evidence for Cultured Human Vascular Smooth Muscle Cell Heterogeneity: Isolation of Clonal Cells and Study of their Growth Characteristics. Thrombosis and Haemostasis, 1996, 75, 854-858.	3.4	38
35	Prothrombin cleavage by human vascular smooth muscle cells: A potential alternative pathway to the coagulation cascade. Journal of Cellular Biochemistry, 1995, 59, 514-528.	2.6	8
36	Thrombin Receptor Activating Peptide (TRAP) Stimulates Mitogenesis, c-fos and PDGF-A Gene Expression in Human Vascular Smooth Muscle Cells. Thrombosis and Haemostasis, 1995, 74, 1340-1347.	3.4	25

#	Article	IF	CITATIONS
37	Thrombin-induced proliferation and expression of platelet-derived growth factor-A chain gene in human vascular smooth muscle cells. FEBS Letters, 1992, 314, 143-148.	2.8	73