Hemlata Patil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11858683/publications.pdf Version: 2024-02-01

Ηεμιλτλ Ρλτι

#	Article	IF	CITATIONS
1	Hot-Melt Extrusion: from Theory to Application in Pharmaceutical Formulation. AAPS PharmSciTech, 2016, 17, 20-42.	3.3	364
2	Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. International Journal of Pharmaceutics, 2017, 519, 186-197.	5.2	315
3	Contribution of hot-melt extrusion technology to advance drug delivery in the 21st century. Expert Opinion on Drug Delivery, 2016, 13, 451-464.	5.0	125
4	Continuous Production of Fenofibrate Solid Lipid Nanoparticles by Hot-Melt Extrusion Technology: a Systematic Study Based on a Quality by Design Approach. AAPS Journal, 2015, 17, 194-205.	4.4	88
5	A non-fullerene electron acceptor based on fluorene and diketopyrrolopyrrole building blocks for solution-processable organic solar cells with an impressive open-circuit voltage. Physical Chemistry Chemical Physics, 2014, 16, 23837-23842.	2.8	63
6	Tetraphenylethene-Based Star Shaped Porphyrins: Synthesis, Self-assembly, and Optical and Photophysical Study. Journal of Organic Chemistry, 2015, 80, 3832-3840.	3.2	53
7	Conjugation of Hot-Melt Extrusion with High-Pressure Homogenization: a Novel Method of Continuously Preparing Nanocrystal Solid Dispersions. AAPS PharmSciTech, 2016, 17, 78-88.	3.3	48
8	An update on the contribution of hot-melt extrusion technology to novel drug delivery in the twenty-first century: part I. Expert Opinion on Drug Delivery, 2019, 16, 539-550.	5.0	46
9	Development of an Ointment Formulation Using Hot-Melt Extrusion Technology. AAPS PharmSciTech, 2016, 17, 158-166.	3.3	45
10	An update on the contribution of hot-melt extrusion technology to novel drug delivery in the twenty-first century: part II. Expert Opinion on Drug Delivery, 2019, 16, 567-582.	5.0	45
11	Formulation and development of pH-independent/dependent sustained release matrix tablets of ondansetron HCl by a continuous twin-screw melt granulation process. International Journal of Pharmaceutics, 2015, 496, 33-41.	5.2	44
12	A diketopyrrolopyrrole and benzothiadiazole based small molecule electron acceptor: design, synthesis, characterization and photovoltaic properties. RSC Advances, 2014, 4, 57635-57638.	3.6	43
13	Thermoreversible nanoethosomal gel for the intranasal delivery of Eletriptan hydrobromide. Journal of Materials Science: Materials in Medicine, 2016, 27, 103.	3.6	41
14	Continuous manufacturing of solid lipid nanoparticles by hot melt extrusion. International Journal of Pharmaceutics, 2014, 471, 153-156.	5.2	39
15	The effects of polymer carrier, hot melt extrusion process and downstream processing parameters on the moisture sorption properties of amorphous solid dispersions. Journal of Pharmacy and Pharmacology, 2016, 68, 692-704.	2.4	39
16	Precise aggregation-induced emission enhancement via H ⁺ sensing and its use in ratiometric detection of intracellular pH values. RSC Advances, 2014, 4, 59078-59082.	3.6	38
17	A non-fullerene electron acceptor based on central carbazole and terminal diketopyrrolopyrrole functionalities for efficient, reproducible and solution-processable bulk-heterojunction devices. RSC Advances, 2016, 6, 28103-28109.	3.6	36
18	A solution-processable electron acceptor based on diketopyrrolopyrrole and naphthalenediimide motifs for organic solar cells. Tetrahedron Letters, 2014, 55, 4430-4432.	1.4	35

Hemlata Patil

#	Article	IF	CITATIONS
19	Conjoint use of Dibenzosilole and Indanâ€1,3â€dione Functionalities to Prepare an Efficient Nonâ€Fullerene Acceptor for Solutionâ€Processable Bulkâ€Heterojunction Solar Cells. Asian Journal of Organic Chemistry, 2015, 4, 1096-1102.	2.7	23
20	Exploratory studies in heat-assisted continuous twin-screw dry granulation: A novel alternative technique to conventional dry granulation. International Journal of Pharmaceutics, 2019, 555, 380-393.	5.2	19
21	Donor–Acceptor–Donor Modular Small Organic Molecules Based on the Naphthalene Diimide Acceptor Unit for Solution-Processable Photovoltaic Devices. Journal of Electronic Materials, 2014, 43, 3243-3254.	2.2	17
22	Rat Palatability Study for Taste Assessment of Caffeine Citrate Formulation Prepared via Hot-Melt Extrusion Technology. AAPS PharmSciTech, 2017, 18, 341-348.	3.3	16
23	Effects of Processing on a Sustained Release Formulation Prepared by Twin-Screw Dry Granulation. Journal of Pharmaceutical Sciences, 2019, 108, 2895-2904.	3.3	16
24	Development of a fast dissolving film of epinephrine hydrochloride as a potential anaphylactic treatment for pediatrics. Pharmaceutical Development and Technology, 2017, 22, 1012-1016.	2.4	12
25	An Electronâ€Accepting Chromophore Based on Fluorene and Naphthalenediimide Building Blocks for Solutionâ€Processable Bulk Heterojunction Devices. Asian Journal of Organic Chemistry, 2015, 4, 800-807.	2.7	11
26	Significant Improvement of Optoelectronic and Photovoltaic Properties by Incorporating Thiophene in a Solution-Processable D–A–D Modular Chromophore. Molecules, 2015, 20, 21787-21801.	3.8	10
27	Isoindigo-Based Small Molecules with Varied Donor Components for Solution-Processable Organic Field Effect Transistor Devices. Molecules, 2015, 20, 17362-17377.	3.8	8