
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1185819/publications.pdf Version: 2024-02-01

INSOO KOO

#	Article	IF	CITATIONS
1	Sensor Fault Classification Based on Support Vector Machine and Statistical Time-Domain Features. IEEE Access, 2017, 5, 8682-8690.	4.2	194
2	Toward a Lightweight Intrusion Detection System for the Internet of Things. IEEE Access, 2019, 7, 42450-42471.	4.2	178
3	Unsupervised Machine Learning-Based Detection of Covert Data Integrity Assault in Smart Grid Networks Utilizing Isolation Forest. IEEE Transactions on Information Forensics and Security, 2019, 14, 2765-2777.	6.9	170
4	Fault diagnosis based on extremely randomized trees in wireless sensor networks. Reliability Engineering and System Safety, 2021, 205, 107284.	8.9	108
5	EECOR: An Energy-Efficient Cooperative Opportunistic Routing Protocol for Underwater Acoustic Sensor Networks. IEEE Access, 2017, 5, 14119-14132.	4.2	103
6	A distributed sensor-fault detection and diagnosis framework using machine learning. Information Sciences, 2021, 547, 777-796.	6.9	98
7	Extremely Randomized Trees-Based Scheme for Stealthy Cyber-Attack Detection in Smart Grid Networks. IEEE Access, 2020, 8, 19921-19933.	4.2	84
8	Feature Selection–Based Detection of Covert Cyber Deception Assaults in Smart Grid Communications Networks Using Machine Learning. IEEE Access, 2018, 6, 27518-27529.	4.2	71
9	CR-SDVN: A Cognitive Routing Protocol for Software-Defined Vehicular Networks. IEEE Sensors Journal, 2018, 18, 1761-1772.	4.7	62
10	Reliable Machine Learning Based Spectrum Sensing in Cognitive Radio Networks. Wireless Communications and Mobile Computing, 2018, 2018, 1-17.	1.2	45
11	Prediction of Digital Terrestrial Television Coverage Using Machine Learning Regression. IEEE Transactions on Broadcasting, 2019, 65, 702-712.	3.2	39
12	Evidence-Theory-Based Cooperative Spectrum Sensing With Efficient Quantization Method in Cognitive Radio. IEEE Transactions on Vehicular Technology, 2011, 60, 185-195.	6.3	38
13	Optimal Multiuser MISO Beamforming for Power-Splitting SWIPT Cognitive Radio Networks. IEEE Access, 2017, 5, 14141-14153.	4.2	37
14	Experiment Design for Parameter Estimation in Probabilistic Sensing Models. IEEE Sensors Journal, 2017, 17, 8431-8437.	4.7	37
15	A Novel Physical Layer Security Scheme in OFDM-Based Cognitive Radio Networks. IEEE Access, 2018, 6, 29486-29498.	4.2	33
16	Energy-Efficient Infrastructure Sensor Network for Ad Hoc Cognitive Radio Network. IEEE Sensors Journal, 2016, 16, 2775-2787.	4.7	32
17	Log-likelihood Ratio Optimal Quantizer for Cooperative Spectrum Sensing in Cognitive Radio. IEEE Communications Letters, 2011, 15, 317-319.	4.1	31
18	Cooperative spectrum sensing with collaborative users using individual sensing credibility for cognitive radio network. IEEE Transactions on Consumer Electronics, 2011, 57, 320-326.	3.6	30

#	Article	IF	CITATIONS
19	Throughput maximisation by optimising detection thresholds in fullâ€duplex cognitive radio networks. IET Communications, 2016, 10, 1355-1364.	2.2	30
20	Depletion-of-Battery Attack: Specificity, Modelling and Analysis. Sensors, 2018, 18, 1849.	3.8	27
21	Energy-Efficient Power Allocation and Relay Selection Schemes for Relay-Assisted D2D Communications in 5G Wireless Networks. Sensors, 2018, 18, 2865.	3.8	26
22	A sequential cooperative spectrum sensing scheme based on cognitive user reputation. IEEE Transactions on Consumer Electronics, 2012, 58, 1147-1152.	3.6	25
23	CAFD: Context-Aware Fault Diagnostic Scheme towards Sensor Faults Utilizing Machine Learning. Sensors, 2021, 21, 617.	3.8	25
24	Covert Cyber Assault Detection in Smart Grid Networks Utilizing Feature Selection and Euclidean Distance-Based Machine Learning. Applied Sciences (Switzerland), 2018, 8, 772.	2.5	23
25	Neighboring and Connectivity-Aware Routing in VANETs. Scientific World Journal, The, 2014, 2014, 1-10.	2.1	21
26	Mitigating the Impacts of Covert Cyber Attacks in Smart Grids Via Reconstruction of Measurement Data Utilizing Deep Denoising Autoencoders. Energies, 2019, 12, 3091.	3.1	19
27	Joint Power Allocation and Power Splitting for MISO-RSMA Cognitive Radio Systems With SWIPT and Information Decoder Users. IEEE Systems Journal, 2021, 15, 5289-5300.	4.6	19
28	Low-Complexity PSO-Based Resource Allocation Scheme for Cooperative Non-Linear SWIPT-Enabled NOMA. IEEE Access, 2022, 10, 34207-34220.	4.2	18
29	Comments and Corrections Comments on "Spectrum Sensing in Cognitive Radio Using Goodness-of-Fit Testing". IEEE Transactions on Wireless Communications, 2012, 11, 3409-3411.	9.2	17
30	Bioinformatics-Inspired Quantized Hard Combination-Based Abnormality Detection for Cooperative Spectrum Sensing in Cognitive Radio Networks. IEEE Sensors Journal, 2015, 15, 2324-2334.	4.7	17
31	Hybrid NOMA/OMA-Based Dynamic Power Allocation Scheme Using Deep Reinforcement Learning in 5G Networks. Applied Sciences (Switzerland), 2020, 10, 4236.	2.5	17
32	Joint power allocation and power splitting for MISO SWIPT RSMA systems with energy-constrained users. Wireless Networks, 2020, 26, 2241-2254.	3.0	16
33	Relay selection and power allocation for secrecy sum rate maximization in underlying cognitive radio with cooperative relaying NOMA. Neurocomputing, 2021, 452, 756-767.	5.9	16
34	A Secure-Transmission Maximization Scheme for SWIPT Systems Assisted by an Intelligent Reflecting Surface and Deep Learning. IEEE Access, 2022, 10, 31851-31867.	4.2	16
35	Energy-Efficient Channel Handoff for Sensor Network-Assisted Cognitive Radio Network. Sensors, 2015, 15, 18012-18039.	3.8	15
36	Throughput Maximization Using an SVM for Multi-Class Hypothesis-Based Spectrum Sensing in Cognitive Radio. Applied Sciences (Switzerland), 2018, 8, 421.	2.5	15

#	Article	IF	CITATIONS
37	A Double Adaptive Approach to Tackle Malicious Users in Cognitive Radio Networks. Wireless Communications and Mobile Computing, 2019, 2019, 1-9.	1.2	15
38	Cognitive Routing in Software-Defined Underwater Acoustic Networks. Applied Sciences (Switzerland), 2017, 7, 1312.	2.5	14
39	A Novel Feature Selection Scheme and a Diversified-Input SVM-Based Classifier for Sensor Fault Classification. Journal of Sensors, 2018, 2018, 1-21.	1.1	14
40	Joint Resource Allocation and Transmission Mode Selection Using a POMDP-Based Hybrid Half-Duplex/Full-Duplex Scheme for Secrecy Rate Maximization in Multi-Channel Cognitive Radio Networks. IEEE Sensors Journal, 2020, 20, 3930-3945.	4.7	14
41	Opportunistic relaying based spectrum leasing for cognitive radio networks. Journal of Communications and Networks, 2011, 13, 50-55.	2.6	13
42	Optimal Throughput for Cognitive Radio with Energy Harvesting in Fading Wireless Channel. Scientific World Journal, The, 2014, 2014, 1-7.	2.1	12
43	Robust Weighted Sum Harvested Energy Maximization for SWIPT Cognitive Radio Networks Based on Particle Swarm Optimization. Sensors, 2017, 17, 2275.	3.8	12
44	Learning Frameworks for Cooperative Spectrum Sensing and Energy-Efficient Data Protection in Cognitive Radio Networks. Applied Sciences (Switzerland), 2018, 8, 722.	2.5	12
45	Exploiting a Deep Neural Network for Efficient Transmit Power Minimization in a Wireless Powered Communication Network. Applied Sciences (Switzerland), 2020, 10, 4622.	2.5	12
46	Machine Learning-based Real-Time Sensor Drift Fault Detection using Raspberry Pi. , 2020, , .		12
47	Optimizing Urban Air Pollution Detection Systems. Sensors, 2022, 22, 4767.	3.8	12
48	A Robust Cooperative Spectrum Sensing Based on Kullback-Leibler Divergence. IEICE Transactions on Communications, 2012, E95.B, 1286-1290.	0.7	11
49	Optimal Truncated Ordered Sequential Cooperative Spectrum Sensing in Cognitive Radio. IEEE Sensors Journal, 2013, 13, 4188-4195.	4.7	11
50	Energy-Efficient Data Encryption Scheme for Cognitive Radio Networks. IEEE Sensors Journal, 2018, 18, 2050-2059.	4.7	11
51	Performance Analysis of Support Vector Machine-Based Classifier for Spectrum Sensing in Cognitive Radio Networks. , 2018, , .		11
52	Economic and Climatic Impacts of Different Peer-to-Peer Game Theoretic–Based Energy Trading Systems. IEEE Access, 2020, 8, 195632-195644.	4.2	11
53	Particle Swarm Optimization-Based Secure Computation Efficiency Maximization in a Power Beacon-Assisted Wireless-Powered Mobile Edge Computing NOMA System. Energies, 2020, 13, 5540.	3.1	11
54	Secrecy Energy Efficiency Maximization in an Underlying Cognitive Radio–NOMA System with a Cooperative Relay and an Energy-Harvesting User. Applied Sciences (Switzerland), 2020, 10, 3630.	2.5	11

#	Article	IF	CITATIONS
55	SVM-Based Bearing Anomaly Identification with Self-Tuning Network-Fuzzy Robust Proportional Multi Integral and Smart Autoregressive Model. Applied Sciences (Switzerland), 2021, 11, 2784.	2.5	11
56	Cramer-von Mises test based spectrum sensing for cognitive radio systems. , 2011, , .		10
57	Deep Q-learning-based resource allocation for solar-powered users in cognitive radio networks. ICT Express, 2021, 7, 49-59.	4.8	10
58	Multi-Slot Spectrum Sensing Schedule and Transmitted Energy Allocation in Harvested Energy Powered Cognitive Radio Networks Under Secrecy Constraints. IEEE Sensors Journal, 2017, 17, 2231-2240.	4.7	9
59	OFDMâ€based spectrumâ€aware routing in underwater cognitive acoustic networks. IET Communications, 2017, 11, 2613-2620.	2.2	9
60	A Cognitive Radio-Based Energy-Efficient System for Power Transmission Line Monitoring in Smart Grids. Journal of Sensors, 2017, 2017, 1-12.	1.1	9
61	Joint Relay Selection and Power Allocation through a Genetic Algorithm for Secure Cooperative Cognitive Radio Networks. Sensors, 2018, 18, 3934.	3.8	9
62	Optimal Power Allocation for Energy-Efficient Data Transmission Against Full-Duplex Active Eavesdroppers in Wireless Sensor Networks. IEEE Sensors Journal, 2019, 19, 5333-5346.	4.7	9
63	Optimised power allocation for a power beacon-assisted SWIPT system with a power-splitting receiver. International Journal of Electronics, 2019, 106, 415-439.	1.4	9
64	Optimizing Efficient Energy Transmission on a SWIPT Interference Channel Under Linear/Nonlinear EH Models. IEEE Systems Journal, 2020, 14, 457-468.	4.6	9
65	Optimized Power Allocation for a Cooperative NOMA System with SWIPT and an Energy-Harvesting User. International Journal of Electronics, 2020, 107, 1704-1733.	1.4	9
66	Analysis of a Network Stability-Aware Clustering Protocol for Cognitive Radio Sensor Networks. IEEE Internet of Things Journal, 2021, 8, 12476-12477.	8.7	9
67	An Efficient Clustering Protocol for Cognitive Radio Sensor Networks. Electronics (Switzerland), 2021, 10, 84.	3.1	9
68	Particle Swarm Optimization-Based Power Allocation Scheme for Secrecy Sum Rate Maximization in NOMA with Cooperative Relaying. Lecture Notes in Computer Science, 2019, , 1-12.	1.3	9
69	An adaptive network allocation vector timer-based carrier sense multiple access with collision avoidance medium access control protocol for underwater acoustic sensor networks. International Journal of Distributed Sensor Networks, 2017, 13, 155014771668776.	2.2	8
70	Game Theory-Based Smart Mobile-Data Offloading Scheme in 5G Cellular Networks. Applied Sciences (Switzerland), 2020, 10, 2327.	2.5	8
71	Graph-based technique for survivability assessment and optimization of IoT applications. International Journal on Software Tools for Technology Transfer, 2021, 23, 105-114.	1.9	8
72	Combining Binary Particle Swarm Optimization With Support Vector Machine for Enhancing Rice Varieties Classification Accuracy. IEEE Access, 2021, 9, 66062-66078.	4.2	8

#	Article	IF	CITATIONS
73	Belief Propagation-Based Cognitive Routing in Maritime Ad Hoc Networks. International Journal of Distributed Sensor Networks, 2016, 12, 7635206.	2.2	8
74	Deep Learning-Assisted Power Minimization in Underlay MISO-SWIPT Systems Based On Rate-Splitting Multiple Access. IEEE Access, 2022, 10, 62137-62156.	4.2	8
75	Performance Analysis of Random Access Channel in OFDMA Systems. , 0, , .		7
76	Sensor faults detection and classification using SVM with diverse features. , 2017, , .		7
77	Efficient attack strategy for legitimate energy-powered eavesdropping in tactical cognitive radio networks. Wireless Networks, 2019, 25, 3605-3622.	3.0	7
78	Infrastructure-aided hybrid routing in CR-VANETs using a Bayesian Model. Wireless Networks, 2019, 25, 1711-1729.	3.0	7
79	Joint Beamforming and Artificial Noise Optimization for Secure Transmissions in MISO-NOMA Cognitive Radio System with SWIPT. Electronics (Switzerland), 2020, 9, 1948.	3.1	7
80	A Transfer Deep Q-Learning Framework for Resource Competition in Virtual Mobile Networks With Energy-Harvesting Base Stations. IEEE Systems Journal, 2021, 15, 319-330.	4.6	7
81	A Transfer Games Actor–Critic Learning Framework for Anti-Jamming in Multi-Channel Cognitive Radio Networks. IEEE Access, 2021, 9, 47887-47900.	4.2	7
82	Optimal Energy Beamforming to Minimize Transmit Power in a Multi-Antenna Wireless Powered Communication Network. Electronics (Switzerland), 2021, 10, 509.	3.1	7
83	IoT-Enabled Vehicle Speed Monitoring System. Electronics (Switzerland), 2022, 11, 614.	3.1	7
84	Cooperative Spectrum Sensing with Double Adaptive Energy Thresholds and Relaying Users in Cognitive Radio. , 2010, , .		6
85	Empirical Distribution-Based Event Detection in Wireless Sensor Networks: An Approach Based on Evidence Theory. IEEE Sensors Journal, 2012, 12, 2222-2228.	4.7	6
86	A cluster-based sequential cooperative spectrum sensing scheme utilizing reporting framework for cognitive radios. IEEJ Transactions on Electrical and Electronic Engineering, 2014, 9, 282-287.	1.4	6
87	Modeling and Analysis of DIPPM: A New Modulation Scheme for Visible Light Communications. Journal of Sensors, 2015, 2015, 1-8.	1.1	6
88	FLCOR. , 2017, , .		6
89	Energy exhaustion attacks in wireless networks. , 2017, , .		6
90	Robust Secure Transmit Design for SWIPT System with Many Types of Wireless Users and Passive Eavesdropper. IEICE Transactions on Communications, 2018, E101.B, 441-450.	0.7	6

#	Article	IF	CITATIONS
91	Joint Full-Duplex/Half-Duplex Transmission-Switching Scheduling and Transmission-Energy Allocation in Cognitive Radio Networks with Energy Harvesting. Sensors, 2018, 18, 2295.	3.8	6
92	Efficient Channel Selection and Routing Algorithm for Multihop, Multichannel Cognitive Radio Networks with Energy Harvesting under Jamming Attacks. Security and Communication Networks, 2018, 2018, 1-12.	1.5	6
93	Actor–Critic-Algorithm-Based Accurate Spectrum Sensing and Transmission Framework and Energy Conservation in Energy-Constrained Wireless Sensor Network-Based Cognitive Radios. Wireless Communications and Mobile Computing, 2019, 2019, 1-12.	1.2	6
94	Deep Learning–Based Energy Beamforming With Transmit Power Control in Wireless Powered Communication Networks. IEEE Access, 2021, 9, 142795-142803.	4.2	6
95	Sensor Fault Diagnosis Using a Machine Fuzzy Lyapunov-Based Computed Ratio Algorithm. Sensors, 2022, 22, 2974.	3.8	6
96	Throughput Maximization of the Cognitive Radio Using Hybrid (Overlay-Underlay) Approach with Energy Harvesting. , 2014, , .		5
97	Comparative analysis of DIPPM scheme for Visible Light Communications. , 2015, , .		5
98	Multichannel-Sensing Scheduling and Transmission-Energy Optimizing in Cognitive Radio Networks with Energy Harvesting. Sensors, 2016, 16, 461.	3.8	5
99	A POMDPâ€based longâ€term transmission rate maximization for cognitive radio networks with wirelessâ€powered ambient backscatter. International Journal of Communication Systems, 2019, 32, e3993.	2.5	5
100	Optimizing a Secure Two-Way Network with Non-Linear SWIPT, Channel Uncertainty, and a Hidden Eavesdropper. Electronics (Switzerland), 2020, 9, 1222.	3.1	5
101	Machine learning-based scheme for multi-class fault detection in turbine engine disks. ICT Express, 2021, 7, 15-22.	4.8	5
102	On the Suitability of Intrusion Detection System for Wireless Edge Networks. Energies, 2021, 14, 5954.	3.1	5
103	Throughput Maximization for Sensor-Aided Cognitive Radio Networks with Continuous Energy Arrivals. Sensors, 2015, 15, 29782-29801.	3.8	4
104	Secure Cooperative Spectrum Sensing via a Novel User-Classification Scheme in Cognitive Radios for Future Communication Technologies. Symmetry, 2015, 7, 675-688.	2.2	4
105	Efficient Transceiver Design for Large-Scale SWIPT System with Time-Switching and Power-Splitting Receivers. IEICE Transactions on Communications, 2018, E101.B, 1744-1751.	0.7	4
106	On Lightweight Method for Intrusions Detection in the Internet of Things. , 2019, , .		4
107	A Repeated Games-Based Secure Multiple-Channels Communications Scheme for Secondary Users with Randomly Attacking Eavesdroppers. Applied Sciences (Switzerland), 2019, 9, 868.	2.5	4
108	Uplink NOMA-based long-term throughput maximization scheme for cognitive radio networks: an actor–critic reinforcement learning approach. Wireless Networks, 2021, 27, 1319-1334.	3.0	4

#	Article	IF	CITATIONS
109	Efficient Selection of Users' Pair in Cognitive Radio Network to Maximize Throughput Using Simultaneous Transmit-Sense Approach. IEICE Transactions on Communications, 2017, E100.B, 380-389.	0.7	4
110	A Censor-Based Cooperative Spectrum Sensing Scheme Using Fuzzy Logic for Cognitive Radio Sensor Networks. IEICE Transactions on Communications, 2010, E93-B, 3497-3500.	0.7	3
111	An Efficient Weight-Based Cooperative Spectrum Sensing Scheme in Cognitive Radio Systems. IEICE Transactions on Communications, 2010, E93-B, 2191-2194.	0.7	3
112	Compressed Sensing-based data gathering in wireless Home Area Network for smart grid. , 2012, , .		3
113	Secure Cooperative Spectrum Sensing for the Cognitive Radio Network Using Nonuniform Reliability. Scientific World Journal, The, 2014, 2014, 1-10.	2.1	3
114	Spectrum and connectivity aware anchor-based routing in cognitive vehicular ad hoc networks. , 2016, , .		3
115	Sensor network-based spectrum sensing for cognitive radio network. , 2016, , .		3
116	Software-defined networking-based cognitive routing protocol for vehicular ad hoc networks. , 2017, , .		3
117	Convolutional Autoencoder-Based Sensor Fault Classification. , 2018, , .		3
118	Multiuser MISO Beamforming Design for Balancing the Received Powers in Secure Cognitive Radio Networks. , 2018, , .		3
119	Convolution Neural Network-Based Spectrum Sensing for Cognitive Radio Systems Using USRP with GNU Radio. , 2018, , .		3
120	Actor-critic deep learning for efficient user association and bandwidth allocation in dense mobile networks with green base stations. Wireless Networks, 2019, 25, 5057-5068.	3.0	3
121	Dynamic Bandwidth Allocation Scheme for Wireless Networks with Energy Harvesting Using Actor-Critic Deep Reinforcement Learning. , 2019, , .		3
122	Deep Learning-Based Approach to Fast Power Allocation in SISO SWIPT Systems with a Power-Splitting Scheme. Applied Sciences (Switzerland), 2020, 10, 3634.	2.5	3
123	Deep Reinforcement Learning Based Dynamic Spectrum Competition in Green Cognitive Virtualized Networks. IEEE Access, 2021, 9, 52193-52201.	4.2	3
124	Sensor Node Selection-Based Lifetime Maximization in Sensor Network Assisted Cognitive Radio Networks. Advanced Science Letters, 2016, 22, 2432-2437.	0.2	3
125	Simultaneous Wireless Information and Power Transfer Solutions for Energy-Harvesting Fairness in Cognitive Multicast Systems. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2018, E101.A, 1988-1992.	0.3	3
126	UAV-assisted NOMA Downlink Communications Based on Content Caching. , 2020, , .		3

#	Article	IF	CITATIONS
127	Machine Learning-Based Sensor Drift Fault Classification using Discrete Cosine Transform. , 2021, , .		3
128	On Blocking Probability of Multi-Beam CDMA Systems Using SBF Array Antennas. Wireless Personal Communications, 2005, 35, 87-98.	2.7	2
129	A Novel Blind Event Detection Method for Wireless Sensor Networks. Journal of Sensors, 2014, 2014, 1-6.	1.1	2
130	Improving physical layer security via cooperative diversity in energy onstrained cognitive radio networks with multiple eavesdroppers. International Journal of Communication Systems, 2019, 32, e4008.	2.5	2
131	An Integrated Cognitive Radio Network for Coastal Smart Cities. Applied Sciences (Switzerland), 2019, 9, 3557.	2.5	2
132	Dynamic Power Allocation Scheme for NOMA Uplink in Cognitive Radio Networks Using Deep Q Learning. , 2020, , .		2
133	An Adaptive Cooperative Spectrum Sensing Scheme Using Reinforcement Learning for Cognitive Radio Sensor Networks. IEICE Transactions on Communications, 2011, E94-B, 1456-1459.	0.7	2
134	Transmit Beamforming for a MISO SWIPT System with a Power Beacon. , 2020, , .		2
135	Multi-hop cooperative spectrum sensing in cognitive radio network. , 2013, , .		1
136	Throughput Maximization for Secondary User Under Battery Imperfections in Cognitive Radio Networks. IEEE Sensors Journal, 2015, 15, 5616-5623.	4.7	1
137	Partially observable Markov decision processâ€based sensing scheduling for decentralised cognitive radio networks with the awareness of channel switching delay and imperfect sensing. IET Communications, 2016, 10, 651-660.	2.2	1
138	Low-complexity timer-based multi-relay selection and sequential power allocation of cooperative cognitive radio networks for future Internet of things. International Journal of Distributed Sensor Networks, 2016, 12, 155014771667125.	2.2	1
139	Primary user detection in cognitive radio networks through quickest detection. , 2017, , .		1
140	POMDP-Based Throughput Maximization for Cooperative Communications Networks with Energy-Constrained Relay under Attack in the Physical Layer. Applied Sciences (Switzerland), 2018, 8, 1828.	2.5	1
141	Optimal multi-threshold quantization scheme for bioinformatics inspired cooperative spectrum sensing in cognitive radio networks. International Journal of Electronics, 2018, 105, 2082-2098.	1.4	1
142	An efficient bandwidth allocation scheme for hierarchical cellular networks with energy harvesting: an actor-critic approach. International Journal of Electronics, 2019, 106, 1543-1566.	1.4	1
143	Towards Robust IoT Network Topology in Adversarial Environments. , 2019, , .		1
144	Distributed ADMM-based approach for total harvested power maximization in non-linear SWIPT system. Wireless Networks, 2020, 26, 1357-1371.	3.0	1

#	Article	IF	CITATIONS
145	Cache-Enabled Data Rate Maximization for Solar-Powered UAV Communication Systems. Electronics (Switzerland), 2020, 9, 1961.	3.1	1
146	Deep Learning-Based Scheduling Scheme for IEEE 802.15.4e TSCH Network. Wireless Communications and Mobile Computing, 2022, 2022, 1-17.	1.2	1
147	Capacity of next generation unified radio access systems supporting multi-class services. , 0, , .		0
148	Robust hard decision combination scheme based on Kullback-Leibler divergence for cooperative spectrum sensing in cognitive radio. IEEJ Transactions on Electrical and Electronic Engineering, 2012, 7, S114-S118.	1.4	0
149	Goodness-of-Fit Based Secure Cooperative Spectrum Sensing for Cognitive Radio Network. Scientific World Journal, The, 2014, 2014, 1-6.	2.1	0
150	Throughput of primary user with cognitive radio function. , 2014, , .		0
151	SIMO-based coarse fine sensing scheme for wideband cognitive radio communication. , 2015, , .		0
152	Energy-Efficient and Throughput Maximization Scheme for Sensor-Aided Cognitive Radio Networks. IEICE Transactions on Communications, 2015, E98.B, 1996-2003.	0.7	0
153	Evidence theory-based cooperative spectrum sensing in multi antenna cognitive radio system. , 2015, , .		0
154	Cluster-Head Selection for Energy-Harvesting IoT Devices in Multi-tier 5G Cellular Networks. Lecture Notes in Computer Science, 2019, , 634-645.	1.3	0
155	User-centric harvested energy-efficiency maximisation for secure SWIPT transmissions. International Journal of Electronics, 2020, 107, 985-1014.	1.4	0
156	Cognitive Routing in Software-Defined Maritime Networks. Wireless Communications and Mobile Computing, 2020, 2020, 1-15.	1.2	0
157	Optimal Reporting Order for Superposition Cooperative Spectrum Sensing in Cognitive Radio Networks. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2015, E98.A, 1346-1350.	0.3	0
158	Optimizing Sensing Scheduling for Cooperative Spectrum Sensing in Cognitive Radio Networks. IEICE Transactions on Communications, 2017, E100.B, 884-892.	0.7	0
159	Joint Attack-Defense Strategy Based on Game Theory for Cognitive Devices in Covert Communication Networks. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2018, E101.A, 544-548.	0.3	0
160	Packet Delivery Maximization Using Deep Reinforcement Learning-Based Transmission Scheduling for Industrial Cognitive Radio Systems. IEEE Access, 2021, 9, 146492-146508.	4.2	0
161	Machine learning-based Scheme for Fault Detection for Turbine Engine Disk. , 2020, , .		0
162	New Fuzzy Observer Fault Pattern Detection by NARX-Laguerre Model Applied to the Rotating Machine. Lecture Notes in Networks and Systems, 2022, , 246-253.	0.7	0