Ching W Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11856706/publications.pdf

Version: 2024-02-01

38	1,390	17	32
papers	citations	h-index	g-index
38	38	38	2201 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	39.1: Invited Paper: Organic Colorâ€Conversion Materials for Fullâ€Color MicroLED Displays. Digest of Technical Papers SID International Symposium, 2021, 52, 269-269.	0.3	0
2	61â€2: 2â€inch, 2,000â€ppi Silicon Nitride Mask for Patterning Ultraâ€Highâ€Resolution OLED Displays. Digest o Technical Papers SID International Symposium, 2020, 51, 909-912.	f _{0.3}	6
3	12â€4: Blue OLEDs Fabricated by Closeâ€Space Sublimation. Digest of Technical Papers SID International Symposium, 2019, 50, 153-156.	0.3	2
4	Silver-induced activation of 8-hydroxyquinolinato lithium as electron injection material in single-stack and tandem OLED devices. Organic Electronics, 2018, 59, 220-223.	2.6	10
5	Effect of lithium and silver diffusion in single-stack and tandem OLED devices. Organic Electronics, 2017, 42, 102-106.	2.6	22
6	Chemical degradation mechanism of TAPC as hole transport layer in blue phosphorescent OLED. Organic Electronics, 2017, 42, 379-386.	2.6	40
7	High-Resolution Organic Light-Emitting Diodes Patterned via Contact Printing. ACS Applied Materials & London States (2016, 8, 16809-16815.	8.0	50
8	High efficiency phosphorescent white organic light-emitting diodes with an ultra-thin red and green co-doped layer and dual blue emitting layers. Organic Electronics, 2016, 32, 54-58.	2.6	29
9	Understanding the effect of triplet sensitizers in organic photovoltaic devices. Organic Electronics, 2016, 30, 247-252.	2.6	8
10	Delineation of degradation patterns of C60-based organic solar cells under different environments. Journal of Applied Physics, 2015, 117, .	2.5	3
11	Te/Cu bi-layer: A low-resistance back contact buffer for thin film CdS/CdTe solar cells. Solar Energy Materials and Solar Cells, 2014, 128, 411-420.	6.2	32
12	Degradation of electrical properties of small molecule organic solar cells under oxygen and moisture. Materials Research Society Symposia Proceedings, 2014, 1695, 9.	0.1	1
13	Investigation of blue phosphorescent organic light-emitting diode host and dopant stability. Organic Electronics, 2014, 15, 1312-1316.	2.6	36
14	Degradation of self-assembled monolayers in organic photovoltaic devices. Organic Electronics, 2014, 15, 3624-3631.	2.6	7
15	Investigating blue phosphorescent iridium cyclometalated dopant with phenyl-imidazole ligands. Organic Electronics, 2014, 15, 3127-3136.	2.6	36
16	Effects of emitting layer host composition profile on the recombination zone of blue phosphorescent organic light emitting diodes. Journal of the Society for Information Display, 2013, 21, 55-59.	2.1	0
17	MoO _x as an Efficient and Stable Back Contact Buffer for Thin Film CdTe Solar Cells. Materials Research Society Symposia Proceedings, 2012, 1447, 45.	0.1	2
18	Effects of mixed host spatial distribution on the efficiency of blue phosphorescent organic light-emitting diodes. Applied Physics Letters, 2012, 101, 043303.	3.3	12

#	Article	IF	Citations
19	33.3: <i>Distinguished Student Paper</i> : Improved Blue Phosphorescent OLEDs with a Linearlyâ€Graded Mixed Host Architecture. Digest of Technical Papers SID International Symposium, 2012, 43, 441-444.	0.3	O
20	The effect of MoOx inter-layer on thin film CdTe/CdS solar cell. Solar Energy Materials and Solar Cells, 2012, 105, 86-89.	6.2	29
21	MoOx back contact for CdS/CdTe thin film solar cells: Preparation, device characteristics, and stability. Solar Energy Materials and Solar Cells, 2012, 99, 349-355.	6.2	56
22	Effects of high-temperature annealing on ultra-thin CdTe solar cells. Thin Solid Films, 2011, 520, 563-568.	1.8	14
23	Bulk Heterojunction Photovoltaic Cells with Low Donor Concentration. Advanced Materials, 2011, 23, 4960-4964.	21.0	178
24	Strong interface p-doping and band bending in C60 on MoOx. Organic Electronics, 2011, 12, 1588-1593.	2.6	67
25	Fabrication of a blue organic light-emitting diode with a novel thermal deposition boat. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 062401.	1.2	9
26	39.2: Efficient Singleâ€Layer Small Molecule Blue OLEDs Based on a Multifunctional ^{Bi} polar Transport Material. Digest of Technical Papers SID International Symposium, 2010, 41, 552-555.	0.3	5
27	Fabrication of Cd1â^'xZnxS films with controllable zinc doping using a vapor zinc chloride treatment. Solar Energy Materials and Solar Cells, 2010, 94, 2113-2118.	6.2	23
28	Photoswitchable Gas Permeation Membranes Based on Liquid Crystals. Advanced Functional Materials, 2010, 20, 2778-2785.	14.9	19
29	Effects of active layer thickness and thermal annealing on polythiophene: Fullerene bulk heterojunction photovoltaic devices. Applied Physics Letters, 2010, 97, .	3.3	80
30	CdS/CdTe solar cells with MoOx as back contact buffers. Applied Physics Letters, 2010, 97, .	3.3	73
31	Photoswitchable gas permeation membranes based on azobenzene-doped liquid crystals. Proceedings of SPIE, 2009, , .	0.8	5
32	Charge-retraction time-of-flight measurement for organic charge transport materials. Applied Physics Letters, 2007, 91, 152104.	3.3	15
33	64.1: <i>Invited Paper </i> : Polarized OLEDS as Backlight for Liquid Crystal Displays. Digest of Technical Papers SID International Symposium, 2007, 38, 1765-1767.	0.3	0
34	Device Characteristics of Organic Light-Emitting Diodes Comprising Terfluorene Modified with Triphenyltriazine. Chemistry of Materials, 2007, 19, 4043-4048.	6.7	11
35	Glassy nematic conjugated oligomers: materials for organic light-emitting diodes. , 2004, , .		2
36	Monodisperse Glassy-Nematic Conjugated Oligomers with Chemically Tunable Polarized Light Emission. Chemistry of Materials, 2003, 15, 4352-4360.	6.7	100

#	Article	IF	CITATIONS
37	Anthracene derivatives for stable blue-emitting organic electroluminescence devices. Applied Physics Letters, 2002, 80, 3201-3203.	3.3	407
38	Organic colorâ€conversion media for fullâ€color micro‣ED displays. Journal of the Society for Information Display, 0, , .	2.1	1