Stephen R Palumbi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11856272/publications.pdf

Version: 2024-02-01

139 papers 26,610 citations

69 h-index 136 g-index

148 all docs 148 docs citations

148 times ranked 20645 citing authors

#	Article	IF	Citations
1	A roadmap to integrating resilience into the practice of coral reef restoration. Global Change Biology, 2022, 28, 4751-4764.	9.5	27
2	Spatially varying selection between habitats drives physiological shifts and local adaptation in a broadcast spawning coral on a remote atoll in Western Australia. Science Advances, 2022, 8, eabl9185.	10.3	15
3	Assessing the potential for demographic restoration and assisted evolution to build climate resilience in coral reefs. Ecological Applications, 2022, 32, e2650.	3.8	9
4	A Scientific Synthesis of Marine Protected Areas in the United States: Status and Recommendations. Frontiers in Marine Science, 2022, 9, .	2.5	10
5	From coral reefs to Joshua trees: What ecological interactions teach us about the adaptive capacity of biodiversity in the Anthropocene. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	4.0	4
6	Testing smallâ€scale ecological gradients and intraspecific differentiation for hundreds of kelp forest species using haplotypes from metabarcoding. Molecular Ecology, 2021, 30, 3355-3373.	3.9	19
7	Evolution and connectivity influence the persistence and recovery of coral reefs under climate change in the Caribbean, Southwest Pacific, and Coral Triangle. Global Change Biology, 2021, 27, 4307-4321.	9.5	39
8	Widespread variation in heat tolerance and symbiont load are associated with growth tradeoffs in the coral Acropora hyacinthus in Palau. ELife, 2021, 10, .	6.0	40
9	Genomic analysis of distinct bleaching tolerances among cryptic coral species. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210678.	2.6	20
10	Somatic Mutations and Genome Stability Maintenance in Clonal Coral Colonies. Molecular Biology and Evolution, 2020, 37, 828-838.	8.9	16
11	Ocean acidification causes variable traitâ€shifts in a coral species. Global Change Biology, 2020, 26, 6813-6830.	9.5	27
12	Rapid Adaptation to Temperature via a Potential Genomic Island of Divergence in the Invasive Green Crab, Carcinus maenas. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	12
13	Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing. Science, 2019, 365, 487-490.	12.6	123
14	Management for network diversity speeds evolutionary adaptation to climate change. Nature Climate Change, 2019, 9, 632-636.	18.8	59
15	Transcriptomic resilience, symbiont shuffling, and vulnerability to recurrent bleaching in reefâ€building corals. Molecular Ecology, 2019, 28, 3371-3382.	3.9	42
16	Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10586-10591.	7.1	149
17	Accurate population genetic measurements require cryptic species identification in corals. Coral Reefs, 2018, 37, 549-563.	2.2	32
18	Long-term growth rates and effects of bleaching in Acropora hyacinthus. Coral Reefs, 2018, 37, 267-277.	2,2	26

#	Article	IF	Citations
19	Polygenic evolution drives species divergence and climate adaptation in corals. Evolution; International Journal of Organic Evolution, 2018, 72, 82-94.	2.3	61
20	Riskâ€sensitive planning for conserving coral reefs under rapid climate change. Conservation Letters, 2018, 11, e12587.	5.7	151
21	Mechanisms of Thermal Tolerance in Reef-Building Corals across a Fine-Grained Environmental Mosaic: Lessons from Ofu, American Samoa. Frontiers in Marine Science, 2018, 4, .	2.5	110
22	Transcriptomic responses to seawater acidification among sea urchin populations inhabiting a natural pH mosaic. Molecular Ecology, 2017, 26, 2257-2275.	3.9	62
23	The cell specificity of gene expression in the response to heat stress in corals. Journal of Experimental Biology, 2017, 220, 1837-1845.	1.7	23
24	Tidal heat pulses on a reef trigger a fine-tuned transcriptional response in corals to maintain homeostasis. Science Advances, 2017, 3, e1601298.	10.3	70
25	Bacterial community dynamics are linked to patterns of coral heat tolerance. Nature Communications, 2017, 8, 14213.	12.8	529
26	Predicting Responses to Contemporary Environmental Change Using Evolutionary Response Architectures. American Naturalist, 2017, 189, 463-473.	2.1	136
27	Coral reefs in the Anthropocene. Nature, 2017, 546, 82-90.	27.8	1,329
28	The genomics of recovery from coral bleaching. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171790.	2.6	54
29	Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Science Advances, 2017, 3, e1701413.	10.3	161
30	Calcifying algae maintain settlement cues to larval abalone following algal exposure to extreme ocean acidification. Scientific Reports, 2017, 7, 5774.	3.3	26
31	Transcriptome predictors of coral survival and growth in a highly variable environment. Ecology and Evolution, 2017, 7, 4794-4803.	1.9	55
32	Early Transcriptional Responses during Heat Stress in the Coral <i>Acropora hyacinthus</i> Biological Bulletin, 2017, 232, 91-100.	1.8	85
33	Highly localized divergence within supergenes in Atlantic cod (Gadus morhua) within the Gulf of Maine. BMC Genomics, 2017, 18, 271.	2.8	40
34	Practical lowâ€coverage genomewide sequencing of hundreds of individually barcoded samples for population and evolutionary genomics in nonmodel species. Molecular Ecology Resources, 2017, 17, 194-208.	4.8	104
35	Gene Networks in the Wild: Identifying Transcriptional Modules that Mediate Coral Resistance to Experimental Heat Stress. Genome Biology and Evolution, 2016, 8, 243-252.	2.5	73
36	Transcriptome-wide Changes in Coral Gene Expression at Noon and Midnight Under Field Conditions. Biological Bulletin, 2015, 228, 227-241.	1.8	30

3

#	Article	IF	Citations
37	Rapid Acclimation Ability Mediated by Transcriptome Changes in Reef-Building Corals. Genome Biology and Evolution, 2015, 7, 1602-1612.	2.5	126
38	Marine reserves help preserve genetic diversity after impacts derived from climate variability: Lessons from the pink abalone in Baja California. Global Ecology and Conservation, 2015, 4, 264-276.	2.1	42
39	Marine defaunation: Animal loss in the global ocean. Science, 2015, 347, 1255641.	12.6	933
40	The role of transcriptome resilience in resistance of corals to bleaching. Molecular Ecology, 2015, 24, 1467-1484.	3.9	137
41	Ocean acidification research in the â€~post-genomic' era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 185, 33-42.	1.8	18
42	<snp< p=""> /scp> genotyping and population genomics from expressed sequences – current advances and future possibilities. Molecular Ecology, 2015, 24, 2310-2323.</snp<>	3.9	99
43	Multilocus Adaptation Associated with Heat Resistance in Reef-Building Corals. Current Biology, 2014, 24, 2952-2956.	3.9	216
44	Metaâ€analysis reveals lower genetic diversity in overfished populations. Molecular Ecology, 2014, 23, 29-39.	3.9	272
45	Lineage-Specific Transcriptional Profiles of Symbiodinium spp. Unaltered by Heat Stress in a Coral Host. Molecular Biology and Evolution, 2014, 31, 1343-1352.	8.9	135
46	Forensic genomics as a novel tool for identifying the causes of mass mortality events. Nature Communications, 2014, 5, 3652.	12.8	42
47	Mechanisms of reef coral resistance to future climate change. Science, 2014, 344, 895-898.	12.6	684
48	Translational environmental biology: cell biology informing conservation. Trends in Cell Biology, 2014, 24, 265-267.	7.9	20
49	Dispersal at a Snail's Pace: Historical Processes Affect Contemporary Genetic Structure in the Exploited Wavy Top Snail (Megastraea undosa). Journal of Heredity, 2013, 104, 327-340.	2.4	12
50	Coral Bleaching Independent of Photosynthetic Activity. Current Biology, 2013, 23, 1782-1786.	3.9	103
51	Long-term population size of the North Atlantic humpback whale within the context of worldwide population structure. Conservation Genetics, 2013, 14, 103-114.	1.5	32
52	Microevolution in time and space: <scp>SNP</scp> analysis of historical <scp>DNA</scp> reveals dynamic signatures of selection in <scp>A</scp> tlantic cod. Molecular Ecology, 2013, 22, 2424-2440.	3.9	86
53	Transcriptomeâ€wide polymorphisms of red abalone (<i><scp>H</scp>aliotis rufescens</i>) reveal patterns of gene flow and local adaptation. Molecular Ecology, 2013, 22, 2884-2897.	3.9	144
54	Genomic basis for coral resilience to climate change. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1387-1392.	7.1	770

#	Article	IF	Citations
55	Evolutionary change during experimental ocean acidification. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6937-6942.	7.1	285
56	Signals of selection in outlier loci in a widely dispersing species across an environmental mosaic. Molecular Ecology, 2013, 22, 3580-3597.	3.9	56
57	DIFFERENCES IN THE REGULATION OF GROWTH AND BIOMINERALIZATION GENES REVEALED THROUGH LONG-TERM COMMON-GARDEN ACCLIMATION AND EXPERIMENTAL GENOMICS IN THE PURPLE SEA URCHIN. Evolution; International Journal of Organic Evolution, 2013, 67, 1901-1914.	2.3	58
58	Genome-wide polymorphisms show unexpected targets of natural selection. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1412-1420.	2.6	47
59	Open and closed seascapes: Where does habitat patchiness create populations with high fractions of selfâ€recruitment?. Ecological Applications, 2012, 22, 1257-1267.	3.8	92
60	The simple fool's guide to population genomics via <scp>RNA</scp> â€Seq: an introduction to highâ€throughput sequencing data analysis. Molecular Ecology Resources, 2012, 12, 1058-1067.	4.8	229
61	Protein evolution in two co-occurring types of Symbiodinium: an exploration into the genetic basis of thermal tolerance in Symbiodinium clade D. BMC Evolutionary Biology, 2012, 12, 217.	3.2	108
62	Pre-Whaling Genetic Diversity and Population Ecology in Eastern Pacific Gray Whales: Insights from Ancient DNA and Stable Isotopes. PLoS ONE, 2012, 7, e35039.	2.5	61
63	Extensive sympatry, cryptic diversity and introgression throughout the geographic distribution of two coral species complexes. Molecular Ecology, 2012, 21, 2224-2238.	3.9	139
64	The role of genes in understanding the evolutionary ecology of reef building corals. Evolutionary Ecology, 2012, 26, 317-335.	1.2	28
65	Populations of <i>Symbiodinium muscatinei</i> Show Strong Biogeographic Structuring in the Intertidal Anemone <i>Anthopleura elegantissima</i> Biological Bulletin, 2011, 220, 199-208.	1.8	18
66	Unexpected patterns of fisheries collapse in the world's oceans. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8317-8322.	7.1	198
67	Life history, ecology and the biogeography of strong genetic breaks among 15 species of Pacific rockfish, Sebastes. Marine Biology, 2010, 157, 1433-1452.	1.5	38
68	Guiding ecological principles for marine spatial planning. Marine Policy, 2010, 34, 955-966.	3.2	435
69	USING ISOLATION BY DISTANCE AND EFFECTIVE DENSITY TO ESTIMATE DISPERSAL SCALES IN ANEMONEFISH. Evolution; International Journal of Organic Evolution, 2010, 64, 2688-2700.	2.3	72
70	Are Antarctic minke whales unusually abundant because of 20th century whaling?. Molecular Ecology, 2010, 19, 281-291.	3.9	19
71	Seascape genetics along a steep cline: using genetic patterns to test predictions of marine larval dispersal. Molecular Ecology, 2010, 19, 3692-3707.	3.9	99
72	Designing marine reserve networks for both conservation and fisheries management. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18286-18293.	7.1	689

#	Article	IF	Citations
73	Restriction Site Tiling Analysis: accurate discovery and quantitative genotyping of genome-wide polymorphisms using nucleotide arrays. Genome Biology, 2010, 11, R44.	9.6	27
74	Genetic Structure Among 50 Species of the Northeastern Pacific Rocky Intertidal Community. PLoS ONE, 2010, 5, e8594.	2.5	289
75	Comparing Evolutionary Patterns and Variability in the Mitochondrial Control Region and Cytochrome b in Three Species of Baleen Whales. Journal of Molecular Evolution, 2009, 68, 97-111.	1.8	37
76	Managing for ocean biodiversity to sustain marine ecosystem services. Frontiers in Ecology and the Environment, 2009, 7, 204-211.	4.0	254
77	Generalâ€use polymerase chain reaction primers for amplification and direct sequencing of enolase, a singleâ€copy nuclear gene, from different animal phyla. Molecular Ecology Resources, 2009, 9, 144-147.	4.8	5
78	Rebuilding Global Fisheries. Science, 2009, 325, 578-585.	12.6	1,722
79	The tip of the tail: molecular identification of seahorses for sale in apothecary shops and curio stores in California. Conservation Genetics, 2008, 9, 65-71.	1.5	33
80	Ecosystems in Action: Lessons from Marine Ecology about Recovery, Resistance, and Reversibility. BioScience, 2008, 58, 33-42.	4.9	110
81	Mitochondrial and Nuclear Genetic Variation across Calving Lagoons in Eastern North Pacific Gray Whales (Eschrichtius robustus). Journal of Heredity, 2008, 100, 34-46.	2.4	12
82	DNA evidence for historic population size and past ecosystem impacts of gray whales. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15162-15167.	7.1	135
83	THE USE OF GENETIC CLINES TO ESTIMATE DISPERSAL DISTANCES OF MARINE LARVAE. Ecology, 2006, 87, 1094-1103.	3.2	64
84	Impacts of Biodiversity Loss on Ocean Ecosystem Services. Science, 2006, 314, 787-790.	12.6	3,422
85	Restricted Gene Flow in the Caribbean Staghorn Coral Acropora cervicornis: Implications for the Recovery of Endangered Reefs. Journal of Heredity, 2006, 98, 40-50.	2.4	149
86	COMPARATIVE PHYLOGEOGRAPHY OF THREE CODISTRIBUTED STOMATOPODS: ORIGINS AND TIMING OF REGIONAL LINEAGE DIVERSIFICATION IN THE CORAL TRIANGLE. Evolution; International Journal of Organic Evolution, 2006, 60, 1825-1839.	2.3	170
87	Seascape Genetics: A Coupled Oceanographic-Genetic Model Predicts Population Structure of Caribbean Corals. Current Biology, 2006, 16, 1622-1626.	3.9	255
88	COMPARATIVE PHYLOGEOGRAPHY OF THREE CODISTRIBUTED STOMATOPODS: ORIGINS AND TIMING OF REGIONAL LINEAGE DIVERSIFICATION IN THE CORAL TRIANGLE. Evolution; International Journal of Organic Evolution, 2006, 60, 1825.	2.3	2
89	Comparative phylogeography of three codistributed stomatopods: origins and timing of regional lineage diversification in the Coral Triangle. Evolution; International Journal of Organic Evolution, 2006, 60, 1825-39.	2.3	36
90	CONSPECIFIC SPERM PRECEDENCE IN TWO SPECIES OF TROPICAL SEA URCHINS. Evolution; International Journal of Organic Evolution, 2005, 59, 97-105.	2.3	63

#	Article	IF	Citations
91	CONSPECIFIC SPERM PRECEDENCE IN TWO SPECIES OF TROPICAL SEA URCHINS. Evolution; International Journal of Organic Evolution, 2005, 59, 97.	2.3	5
92	Evolutionary animation: How do molecular phylogenies compare to Mayr's reconstruction of speciation patterns in the sea?. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6566-6572.	7.1	57
93	Gene expression and feeding ecology: evolution of piscivory in the venomous gastropod genus Conus. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1165-1174.	2.6	63
94	Strong genetic clines and geographical variation in gene flow in the rocky intertidal barnacle Balanus glandula. Molecular Ecology, 2004, 13, 2143-2156.	3.9	235
95	Testing the utility of internally transcribed spacer sequences in coral phylogenetics. Molecular Ecology, 2004, 13, 2763-2772.	3.9	148
96	A global invader at home: population structure of the green crab, Carcinus maenas, in Europe. Molecular Ecology, 2004, 13, 2891-2898.	3.9	201
97	MARINE RESERVES AND OCEAN NEIGHBORHOODS: The Spatial Scale of Marine Populations and Their Management. Annual Review of Environment and Resources, 2004, 29, 31-68.	13.4	430
98	REPRODUCTIVE CHARACTER DISPLACEMENT AND THE GENETICS OF GAMETE RECOGNITION IN TROPICAL SEA URCHINS. Evolution; International Journal of Organic Evolution, 2003, 57, 1049-1060.	2.3	98
99	POPULATION GENETICS, DEMOGRAPHIC CONNECTIVITY, AND THE DESIGN OF MARINE RESERVES. , 2003, 13, 146-158.		891
100	PLUGGING A HOLE IN THE OCEAN: THE EMERGING SCIENCE OF MARINE RESERVES1., 2003, 13, 3-7.		525
101	New wave: high-tech tools to help marine reserve research. Frontiers in Ecology and the Environment, 2003, 1, 73-79.	4.0	58
102	ECOLOGY: Enhanced: Why Gobies Are Like Hobbits. Science, 2003, 299, 51-52.	12.6	44
103	Recent speciation in the Indo–West Pacific: rapid evolution of gamete recognition and sperm morphology in cryptic species of sea urchin. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1839-1847.	2.6	86
104	Whales Before Whaling in the North Atlantic. Science, 2003, 301, 508-510.	12.6	265
105	Marine Reserves: The Best Option for Our Oceans?. Frontiers in Ecology and the Environment, 2003, 1, 495.	4.0	19
106	POPULATION GENETICS, DEMOGRAPHIC CONNECTIVITY, AND THE DESIGN OF MARINE RESERVES. , 2003, 13, 146.		3
107	Hybridization and the Evolution of Reef Coral Diversity. Science, 2002, 296, 2023-2025.	12.6	252
108	Origins of diverse feeding ecologies within Conus, a genus of venomous marine gastropods. Biological Journal of the Linnean Society, 2001, 73, 391-409.	1.6	113

#	Article	IF	CITATIONS
109	Designing Marine Reserve Networks Why Small, Isolated Protected Areas Are Not Enough. Conservation, 2001, 2, 10-17.	0.1	71
110	PREDICTING NUCLEAR GENE COALESCENCE FROM MITOCHONDRIAL DATA: THE THREE-TIMES RULE. Evolution; International Journal of Organic Evolution, 2001, 55, 859.	2.3	255
111	PREDICTING NUCLEAR GENE COALESCENCE FROM MITOCHONDRIAL DATA: THE THREE-TIMES RULE. Evolution; International Journal of Organic Evolution, 2001, 55, 859-868.	2.3	29
112	Origins of diverse feeding ecologies within Conus, a genus of venomous marine gastropods. Biological Journal of the Linnean Society, 2001, 73, 391-409.	1.6	9
113	A marine Wallace's line?. Nature, 2000, 406, 692-693.	27.8	347
114	The accuracy of heterozygous base calling from diploid sequence and resolution of haplotypes using allele-specific sequencing. Molecular Ecology, 1999, 8, 1750-1752.	3.9	42
115	Genetic tracking of a protected whale. Nature, 1999, 397, 307-308.	27.8	40
116	The prodigal fish. Nature, 1999, 402, 733-735.	27.8	30
117	Intraspecific Genetic Diversity in the Marine Shrimp Penaeus vannamei: Multiple Polymorphic Elongation Factor-1α Loci Revealed by Intron Sequencing. Marine Biotechnology, 1999, 1, 261-268.	2.4	20
118	COLOR PATTERN EVOLUTION, ASSORTATIVE MATING, AND GENETIC DIFFERENTIATION IN BRIGHTLY COLORED BUTTERFLYFISHES (CHAETODONTIDAE). Evolution; International Journal of Organic Evolution, 1999, 53, 247-260.	2.3	126
119	Speciation and Population Genetic Structure in Tropical Pacific Sea Urchins. Evolution; International Journal of Organic Evolution, 1997, 51, 1506.	2.3	109
120	SPECIATION AND POPULATION GENETIC STRUCTURE IN TROPICAL PACIFIC SEA URCHINS. Evolution; International Journal of Organic Evolution, 1997, 51, 1506-1517.	2.3	237
121	A star is born. Nature, 1997, 390, 556-557.	27.8	3
122	Molecular evolution of a portion of the mitochondrial 16S ribosomal gene region in scleractinian corals. Journal of Molecular Evolution, 1997, 45, 397-411.	1.8	113
123	Rapid Rate of Control-Region Evolution in Pacific Butterflyfishes (Chaetodontidae). Journal of Molecular Evolution, 1997, 45, 473-484.	1.8	106
124	What can molecular genetics contribute to marine biogeography? An urchin's tale. Journal of Experimental Marine Biology and Ecology, 1996, 203, 75-92.	1.5	188
125	Population Structure, Molecular Systematics, and Forensic Identification of Whales and Dolphins., 1996,, 10-49.		32
126	Genetic Divergence, Reproductive Isolation, and Marine Speciation. Annual Review of Ecology, Evolution, and Systematics, 1994, 25, 547-572.	6.7	1,318

#	Article	IF	CITATIONS
127	POPULATION GENETIC CONSEQUENCES OF DEVELOPMENTAL EVOLUTION IN SEA URCHINS (GENUS) TJ ETQq1 1	0.784314 2.3	FgBT /Ove
128	Population Genetic Structure of the Armorhead, Pseudopentaceros wheeleri, in the North Pacific Ocean: Application of the Polymerase Chain Reaction to Fisheries problems. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49, 2386-2391.	1.4	52
129	Marine speciation on a small planet. Trends in Ecology and Evolution, 1992, 7, 114-118.	8.7	465
130	Population Genetic Consequences of Developmental Evolution in Sea Urchins (Genus heliocidaris). Evolution; International Journal of Organic Evolution, 1992, 46, 1299.	2.3	87
131	Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature, 1992, 357, 153-155.	27.8	488
132	Population Biology of the Trans-Arctic Exchange: MtDNA Sequence Similarity between Pacific and Atlantic Sea Urchins. Evolution; International Journal of Organic Evolution, 1991, 45, 1790.	2.3	44
133	POPULATION BIOLOGY OF THE TRANSâ€ARCTIC EXCHANGE: MtDNA SEQUENCE SIMILARITY BETWEEN PACIFIC AND ATLANTIC SEA URCHINS. Evolution; International Journal of Organic Evolution, 1991, 45, 1790-1805.	2.3	104
134	MITOCHONDRIAL DNA DIVERSITY IN THE SEA URCHINS <i>STRONGYLOCENTROTUS PURPURATUS </i> AND <i>S. DROEBACHIENSIS </i> Evolution; International Journal of Organic Evolution, 1990, 44, 403-415.	2.3	185
135	Mitochondrial DNA Diversity in the Sea Urchins Strongylocentrotus purpuratus and S. Droebachiensis. Evolution; International Journal of Organic Evolution, 1990, 44, 403.	2.3	77
136	Rates of molecular evolution and the fraction of nucleotide positions free to vary. Journal of Molecular Evolution, 1989, 29, 180-187.	1.8	69
137	Endemism and evolution in Hawaiian marine invertebrates. Trends in Ecology and Evolution, 1987, 2, 183-186.	8.7	71
138	Mitochondrial DNA and two perspectives on evolutionary genetics. Biological Journal of the Linnean Society, 1985, 26, 375-400.	1.6	985
139	EXTRANUCLEAR DIFFERENTIATION AND GENE FLOW IN THE FINITE ISLAND MODEL. Genetics, 1985, 109, 441-457.	2.9	193