List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11855908/publications.pdf Version: 2024-02-01

ΜλριτΙΔέχο

#	Article	IF	CITATIONS
1	Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms. Biomolecules, 2015, 5, 1399-1440.	4.0	182
2	Diesel exhaust particles induce CYP1A1 and pro-inflammatory responses via differential pathways in human bronchial epithelial cells. Particle and Fibre Toxicology, 2010, 7, 41.	6.2	141
3	Cytokine release from alveolar macrophages exposed to ambient particulate matter: heterogeneity in relation to size, city and season. Particle and Fibre Toxicology, 2005, 2, 4.	6.2	135
4	Comparison of non-crystalline silica nanoparticles in IL-1β release from macrophages. Particle and Fibre Toxicology, 2012, 9, 32.	6.2	122
5	Polycyclic aromatic hydrocarbons induce both apoptotic and anti-apoptotic signals in Hepa1c1c7 cells. Carcinogenesis, 2003, 25, 809-819.	2.8	112
6	Potential role of polycyclic aromatic hydrocarbons as mediators of cardiovascular effects from combustion particles. Environmental Health, 2019, 18, 74.	4.0	110
7	Cadmium-induced inflammatory responses in cells relevant for lung toxicity: Expression and release of cytokines in fibroblasts, epithelial cells and macrophages. Toxicology Letters, 2010, 193, 252-260.	0.8	103
8	Differential effects of the particle core and organic extract of diesel exhaust particles. Toxicology Letters, 2012, 208, 262-268.	0.8	89
9	Potential role of polycyclic aromatic hydrocarbons in air pollution-induced non-malignant respiratory diseases. Respiratory Research, 2020, 21, 299.	3.6	88
10	Fluoride-induced apoptosis in human epithelial lung cells (A549 cells): role of different G protein-linked signal systems. Human and Experimental Toxicology, 2003, 22, 111-123.	2.2	71
11	Particles from wood smoke and traffic induce differential pro-inflammatory response patterns in co-cultures. Toxicology and Applied Pharmacology, 2008, 232, 317-326.	2.8	70
12	AhR and Arnt differentially regulate NF-κB signaling and chemokine responses in human bronchial epithelial cells. Cell Communication and Signaling, 2014, 12, 48.	6.5	65
13	p38 and Src-ERK1/2 Pathways Regulate Crystalline Silica-Induced Chemokine Release in Pulmonary Epithelial Cells. Toxicological Sciences, 2004, 81, 480-490.	3.1	64
14	Differential proinflammatory responses induced by diesel exhaust particles with contrasting PAH and metal content. Environmental Toxicology, 2015, 30, 188-196.	4.0	63
15	Cell Toxicity and Oxidative Potential of Engine Exhaust Particles: Impact of Using Particulate Filter or Biodiesel Fuel Blend. Environmental Science & Technology, 2013, 47, 5931-5938.	10.0	62
16	Early life exposure to air pollution particulate matter (PM) as risk factor for attention deficit/hyperactivity disorder (ADHD): Need for novel strategies for mechanisms and causalities. Toxicology and Applied Pharmacology, 2018, 354, 196-214.	2.8	61
17	Role of mitogen activated protein kinases and protein kinase C in cadmium-induced apoptosis of primary epithelial lung cells. Toxicology, 2005, 211, 253-264.	4.2	59
18	Role of cell signaling in B[a]P-induced apoptosis: characterization of unspecific effects of cell signaling inhibitors and apoptotic effects of B[a]P metabolites. Chemico-Biological Interactions, 2005, 151, 101-119.	4.0	55

#	Article	IF	CITATIONS
19	Lipophilic components of diesel exhaust particles induce pro-inflammatory responses in human endothelial cells through AhR dependent pathway(s). Particle and Fibre Toxicology, 2018, 15, 21.	6.2	52
20	Per- and polyfluoroalkyl substances (PFASs) modify lung surfactant function and pro-inflammatory responses in human bronchial epithelial cells. Toxicology in Vitro, 2020, 62, 104656.	2.4	47
21	Expression of Cyp2B1 in Freshly Isolated and Proliferating Cultures of Epithelial Rat Lung Cells. Experimental Lung Research, 1996, 22, 627-649.	1.2	46
22	The occurrence of polycyclic aromatic hydrocarbons and their derivatives and the proinflammatory potential of fractionated extracts of diesel exhaust and wood smoke particles. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 383-396.	1.7	43
23	1-Nitropyrene (1-NP) induces apoptosis and apparently a non-apoptotic programmed cell death (paraptosis) in Hepa1c1c7 cells. Toxicology and Applied Pharmacology, 2008, 230, 175-186.	2.8	42
24	Pro-inflammatory effects of crystalline- and nano-sized non-crystalline silica particles in a 3D alveolar model. Particle and Fibre Toxicology, 2020, 17, 13.	6.2	42
25	Silica nanoparticles induce cytokine responses in lung epithelial cells through activation of a p38/TACE/TGF-α/EGFR-pathway and NF-κΒ signalling. Toxicology and Applied Pharmacology, 2014, 279, 76-86.	2.8	39
26	Triggering Mechanisms and Inflammatory Effects of Combustion Exhaust Particles with Implication for Carcinogenesis. Basic and Clinical Pharmacology and Toxicology, 2017, 121, 55-62.	2.5	39
27	Regulation of CCSP (PCB-BP/Uteroglobin) Expression in Primary Cultures of Lung Cells: Involvement of C/EBP. DNA and Cell Biology, 1998, 17, 481-492.	1.9	35
28	Mechanisms of silica-induced IL-8 release from A549 cells: Initial kinase-activation does not require EGFR activation or particle uptake. Toxicology, 2006, 227, 105-116.	4.2	35
29	Importance of agglomeration state and exposure conditions for uptake and pro-inflammatory responses to amorphous silica nanoparticles in bronchial epithelial cells. Nanotoxicology, 2012, 6, 700-712.	3.0	35
30	Particle-Induced Cytokine Responses in Cardiac Cell Cultures—the Effect of Particles versus Soluble Mediators Released by Particle-Exposed Lung Cells. Toxicological Sciences, 2008, 106, 233-241.	3.1	34
31	Silica Nanoparticleâ€induced Cytokine Responses in BEASâ€2B and HBEC3â€KT Cells: Significance of Particle Size and Signalling Pathways in Different Lung Cell Cultures. Basic and Clinical Pharmacology and Toxicology, 2018, 122, 620-632.	2.5	32
32	IL-1beta differently involved in IL-8 and FGF-2 release in crystalline silica-treated lung cell co-cultures. Particle and Fibre Toxicology, 2008, 5, 16.	6.2	31
33	Species differences in testicular necrosis and DNA damage, distribution and metabolism of 1,2-dibromo-3-chloropropane (DBCP). Toxicology, 1989, 58, 133-144.	4.2	30
34	Pro-inflammatory potential of ultrafine particles in mono- and co-cultures of primary cardiac cells. Toxicology, 2008, 247, 23-32.	4.2	28
35	Mechanisms in fluoride-induced interleukin-8 synthesis in human lung epithelial cells. Toxicology, 2001, 167, 145-158.	4.2	25
36	Mechanisms involved in ultrafine carbon black-induced release of IL-6 from primary rat epithelial lung cells. Toxicology in Vitro, 2010, 24, 10-20.	2.4	25

#	Article	IF	CITATIONS
37	Mechanisms of chemokine responses by polycyclic aromatic hydrocarbons in bronchial epithelial cells: Sensitization through toll-like receptor-3 priming. Toxicology Letters, 2013, 219, 125-132.	0.8	24
38	Mutagenic activity of halogenated propanes and propenes: effect of bromine and chlorine positioning. Chemico-Biological Interactions, 1994, 93, 73-84.	4.0	23
39	Different particle determinants induce apoptosis and cytokine release in primary alveolar macrophage cultures. Particle and Fibre Toxicology, 2006, 3, 10.	6.2	23
40	Role of IL-1β and COX2 in silica-induced IL-6 release and loss of pneumocytes in co-cultures. Toxicology in Vitro, 2009, 23, 1342-1353.	2.4	21
41	Differential NF-κB and MAPK activation underlies fluoride- and TPA-mediated CXCL8 (IL-8) induction in lung epithelial cells. Journal of Inflammation Research, 2014, 7, 169.	3.5	21
42	Role of P-450 activity and glutathione levels in 1,2-dibromo-3-chloropropane tissue distribution, renal necrosis and in vivo DNA damage. Toxicology, 1989, 56, 273-288.	4.2	19
43	PERSISTENT VERSUS TRANSIENT MAP KINASE (ERK) ACTIVATION IN THE PROLIFERATION OF LUNG EPITHELIAL TYPE 2 CELLS. Experimental Lung Research, 2001, 27, 387-400.	1.2	19
44	The ability of oxidative stress to mimic quartz-induced chemokine responses is lung cell line-dependent. Toxicology Letters, 2008, 181, 75-80.	0.8	18
45	Cytokine responses induced by diesel exhaust particles are suppressed by PAR-2 silencing and antioxidant treatment, and driven by polar and non-polar soluble constituents. Toxicology Letters, 2015, 238, 72-82.	0.8	18
46	Concentrationâ€dependent cytokine responses of silica nanoparticles and role of ROS in human lung epithelial cells. Basic and Clinical Pharmacology and Toxicology, 2019, 125, 304-314.	2.5	18
47	Fluoride-induced IL-8 release in human epithelial lung cells: Relationship to EGF-receptor-, SRC- and MAP-kinase activation. Toxicology and Applied Pharmacology, 2008, 227, 56-67.	2.8	17
48	Signalling pathways involved in 1-nitropyrene (1-NP)-induced and 3-nitrofluoranthene (3-NF)-induced cell death in Hepa1c1c7 cells. Mutagenesis, 2009, 24, 481-493.	2.6	16
49	Respirable stone particles differ in their ability to induce cytotoxicity and pro-inflammatory responses in cell models of the human airways. Particle and Fibre Toxicology, 2021, 18, 18.	6.2	16
50	The pro-inflammatory effects of combined exposure to diesel exhaust particles and mineral particles in human bronchial epithelial cells. Particle and Fibre Toxicology, 2022, 19, 14.	6.2	15
51	3-Nitrofluoranthene (3-NF) but not 3-aminofluoranthene (3-AF) elicits apoptosis as well as programmed necrosis in Hepa1c1c7 cells. Toxicology, 2009, 255, 140-150.	4.2	14
52	Differential chemokine induction by 1-nitropyrene and 1-aminopyrene in bronchial epithelial cells: Importance of the TACE/TGF-α/EGFR-pathway. Environmental Toxicology and Pharmacology, 2013, 35, 235-239.	4.0	14
53	Toll like receptor-3 priming alters diesel exhaust particle-induced cytokine responses in human bronchial epithelial cells. Toxicology Letters, 2014, 228, 42-47.	0.8	13
54	Mineral composition other than quartz is a critical determinant of the particle inflammatory potential. International Journal of Hygiene and Environmental Health, 2002, 204, 327-331.	4.3	11

#	Article	IF	CITATIONS
55	Metabolism of nilutamide in rat lung. Biochemical Pharmacology, 2006, 71, 377-385.	4.4	11
56	Species Differences in Kidney Necrosis and DNA Damage, Distribution and Glutathioneâ€Dependent Metabolism of 1,2â€Dibromoâ€3â€chloropropane (DBCP). Basic and Clinical Pharmacology and Toxicology, 1990, 66, 287-293.	0.0	10
57	Regulation of rat alveolar type 2 cell proliferation in vitro involves type II cAMP-dependent protein kinase. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L232-L239.	2.9	8
58	Effects of cadmium acetate and sodium selenite on mucociliary functions and adenosine triphosphate content in mouse trachea organ cultures. Toxicology, 1986, 39, 323-332.	4.2	7
59	Metabolism of selectively methylated and deuterated analogs of 1,2-dibromo-3-chloropropane: Role in organ toxicity and mutagenicity. Chemico-Biological Interactions, 1989, 69, 33-44.	4.0	7
60	Synthetic hydrosilicate nanotubes induce low proâ€inflammatory and cytotoxic responses compared to natural chrysotile in lung cell cultures. Basic and Clinical Pharmacology and Toxicology, 2020, 126, 374-388.	2.5	7
61	Prevention of 1,2-dibromo-3-chloropropane (DBCP)-induced kidney necrosis and testicular atrophy by 3-aminobenzamide. Toxicology and Applied Pharmacology, 1991, 110, 118-128.	2.8	6
62	Road tunnel-derived coarse, fine and ultrafine particulate matter: physical and chemical characterization and pro-inflammatory responses in human bronchial epithelial cells. Particle and Fibre Toxicology, 2022, 19, .	6.2	6
63	The importance of mineralogical composition for the cytotoxic and pro-inflammatory effects of mineral dust. Particle and Fibre Toxicology, 2022, 19, .	6.2	4
64	Ion transport and cadmium-induced inhibition of ciliary activity and induction of swelling of epithelial cells in mouse trachea organ culture. Toxicology, 1987, 47, 247-258.	4.2	3
65	Role of scavenger receptors in silica nanoparticle-induced cytokine responses in bronchial epithelial cells. Toxicology Letters, 2021, 353, 100-106.	0.8	2