List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11855878/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Mechanisms of reinforcement of PVA-Based nanocomposites by hBN nanosheets. Composites Science and Technology, 2022, 218, 109131.	3.8	10
2	Interfacial energy dissipation in bio-inspired graphene nanocomposites. Composites Science and Technology, 2022, 219, 109216.	3.8	9
3	Silane-functionalized graphene nanoplatelets for silicone rubber nanocomposites. Journal of Materials Science, 2022, 57, 2683-2696.	1.7	11
4	Deformation of and Interfacial Stress Transfer in Ti ₃ C ₂ MXene–Polymer Composites. ACS Applied Materials & Interfaces, 2022, 14, 10681-10690.	4.0	19
5	Graphene Nanoplatelets as a Replacement for Carbon Black in Rubber Compounds. Polymers, 2022, 14, 1204.	2.0	10
6	Controlling and Monitoring Crack Propagation in Monolayer Graphene Single Crystals. Advanced Functional Materials, 2022, 32, .	7.8	4
7	High-performance fluoroelastomer-graphene nanocomposites for advanced sealing applications. Composites Science and Technology, 2021, 202, 108592.	3.8	18
8	Deformation and tearing of graphene-reinforced elastomer nanocomposites. Composites Communications, 2021, 25, 100764.	3.3	5
9	Interlayer and interfacial stress transfer in hBN nanosheets. 2D Materials, 2021, 8, 035058.	2.0	13
10	MoS2 Nanosheet-Coated Carbon Fibers as Strain Sensors in Epoxy Composites. ACS Applied Nano Materials, 2021, 4, 9181-9189.	2.4	3
11	Fundamental Insights into Graphene Strain Sensing. Nano Letters, 2021, 21, 833-839.	4.5	13
12	Suspended graphene arrays for gas sensing applications. 2D Materials, 2021, 8, 025006.	2.0	15
13	Spinning conditions affect structure and properties of Nephila spider silk. MRS Bulletin, 2021, 46, 915-924.	1.7	10
14	Graphene and related materials in hierarchical fiber composites: Production techniques and key industrial benefits. Composites Science and Technology, 2020, 185, 107848.	3.8	36
15	PMMA-grafted graphene nanoplatelets to reinforce the mechanical and thermal properties of PMMA composites. Carbon, 2020, 157, 750-760.	5.4	56
16	Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale, 2020, 12, 2228-2267.	2.8	222
17	Reinforcement of Polymer-Based Nanocomposites by Thermally Conductive and Electrically Insulating Boron Nitride Nanotubes. ACS Applied Nano Materials, 2020, 3, 364-374.	2.4	18
18	Raman spectroscopic study of reinforcement mechanisms of electron beam radiation crosslinking of natural rubber composites filled with graphene and silica/graphene mixture prepared by latex mixing. Composites Part C: Open Access, 2020, 3, 100049.	1.5	5

#	Article	IF	CITATIONS
19	Multifunctional Biocomposites Based on Polyhydroxyalkanoate and Graphene/Carbon Nanofiber Hybrids for Electrical and Thermal Applications. ACS Applied Polymer Materials, 2020, 2, 3525-3534.	2.0	44
20	Graphene–Polyurethane Coatings for Deformable Conductors and Electromagnetic Interference Shielding. Advanced Electronic Materials, 2020, 6, 2000429.	2.6	25
21	Self-assembly of a layered two-dimensional molecularly woven fabric. Nature, 2020, 588, 429-435.	13.7	74
22	Mechanisms of Liquid-Phase Exfoliation for the Production of Graphene. ACS Nano, 2020, 14, 10976-10985.	7.3	157
23	Anisotropic swelling of elastomers filled with aligned 2D materials. 2D Materials, 2020, 7, 025031.	2.0	8
24	Realising biaxial reinforcement <i>via</i> orientation-induced anisotropic swelling in graphene-based elastomers. Nanoscale, 2020, 12, 3377-3386.	2.8	7
25	Strain engineering in monolayer WS ₂ and WS ₂ nanocomposites. 2D Materials, 2020, 7, 045022.	2.0	40
26	Graphene-Based Materials as Strain Sensors in Glass Fiber/Epoxy Model Composites. ACS Applied Materials & Interfaces, 2019, 11, 31338-31345.	4.0	14
27	The strength of mechanically-exfoliated monolayer graphene deformed on a rigid polymer substrate. Nanoscale, 2019, 11, 14339-14353.	2.8	18
28	Interfacial stress transfer in strain engineered wrinkled and folded graphene. 2D Materials, 2019, 6, 045026.	2.0	32
29	Graphene/Polyelectrolyte Layer-by-Layer Coatings for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2019, 2, 5272-5281.	2.4	40
30	A Simple Method for Anchoring Silver and Copper Nanoparticles on Single Wall Carbon Nanotubes. Nanomaterials, 2019, 9, 1416.	1.9	10
31	Modelling mechanical percolation in graphene-reinforced elastomer nanocomposites. Composites Part B: Engineering, 2019, 178, 107506.	5.9	27
32	Surface functionality analysis by Boehm titration of graphene nanoplatelets functionalized <i>via</i> a solvent-free cycloaddition reaction. Nanoscale Advances, 2019, 1, 1432-1441.	2.2	30
33	Dynamic modulation of the Fermi energy in suspended graphene backgated devices. Science and Technology of Advanced Materials, 2019, 20, 568-579.	2.8	12
34	Copper/graphene composites: a review. Journal of Materials Science, 2019, 54, 12236-12289.	1.7	193
35	Negative Gauge Factor Piezoresistive Composites Based on Polymers Filled with MoS ₂ Nanosheets. ACS Nano, 2019, 13, 6845-6855.	7.3	52
36	Hybrid poly(ether ether ketone) composites reinforced with a combination of carbon fibres and graphene nanoplatelets. Composites Science and Technology, 2019, 175, 60-68.	3.8	52

#	Article	IF	CITATIONS
37	Predicted bandgap opening in highly-oriented wrinkles formed in chemical vapour deposition grown graphene. Materials Research Express, 2019, 6, 026311.	0.8	2
38	Benchmarking of graphene-based materials: real commercial products versus ideal graphene. 2D Materials, 2019, 6, 025006.	2.0	68
39	The taxonomy of graphite nanoplatelets and the influence of nanocomposite processing. Carbon, 2019, 142, 99-106.	5.4	16
40	Micromechanics of reinforcement of a graphene-based thermoplastic elastomer nanocomposite. Composites Part A: Applied Science and Manufacturing, 2018, 110, 84-92.	3.8	53
41	Investigating nanostructures in carbon fibres using Raman spectroscopy. Carbon, 2018, 130, 178-184.	5.4	91
42	Enhanced thermal and fire retardancy properties of polypropylene reinforced with a hybrid graphene/glass-fibre filler. Composites Science and Technology, 2018, 156, 95-102.	3.8	59
43	The mechanics of reinforcement of polymers by graphene nanoplatelets. Composites Science and Technology, 2018, 154, 110-116.	3.8	221
44	The chemical functionalization of graphene nanoplatelets through solvent-free reaction. RSC Advances, 2018, 8, 33564-33573.	1.7	15
45	Composites with carbon nanotubes and graphene: An outlook. Science, 2018, 362, 547-553.	6.0	662
46	Electrically conductive GNP/epoxy composites for out-of-autoclave thermoset curing through Joule heating. Composites Science and Technology, 2018, 164, 304-312.	3.8	52
47	Realizing the theoretical stiffness of graphene in composites through confinement between carbon fibers. Composites Part A: Applied Science and Manufacturing, 2018, 113, 311-317.	3.8	22
48	The Effect of Network Formation on the Mechanical Properties of 1D:2D Nano:Nano Composites. Chemistry of Materials, 2018, 30, 5245-5255.	3.2	33
49	Effect of functional groups on the agglomeration of graphene in nanocomposites. Composites Science and Technology, 2018, 163, 116-122.	3.8	51
50	Water Dispersible Few-Layer Graphene Stabilized by a Novel Pyrene Derivative at Micromolar Concentration. Nanomaterials, 2018, 8, 675.	1.9	9
51	Nanocomposites of graphene nanoplatelets in natural rubber: microstructure and mechanisms of reinforcement. Journal of Materials Science, 2017, 52, 9558-9572.	1.7	41
52	Strain-induced phonon shifts in tungsten disulfide nanoplatelets and nanotubes. 2D Materials, 2017, 4, 015007.	2.0	85
53	Two-Step Electrochemical Intercalation and Oxidation of Graphite for the Mass Production of Graphene Oxide. Journal of the American Chemical Society, 2017, 139, 17446-17456.	6.6	211
54	Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science, 2017, 90, 75-127.	16.0	1,682

#	Article	IF	CITATIONS
55	High thermal conductivity through simultaneously aligned polyethylene lamellae and graphene nanoplatelets. Nanoscale, 2017, 9, 12867-12873.	2.8	50
56	Microstructure and mechanical behaviour of aluminium matrix composites reinforced with graphene oxide and carbon nanotubes. Journal of Materials Science, 2017, 52, 13466-13477.	1.7	48
57	The mechanisms of reinforcement of polypropylene by graphene nanoplatelets. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 216, 2-9.	1.7	81
58	Stress memory materials and their fundamental platform. Journal of Materials Chemistry A, 2017, 5, 503-511.	5.2	19
59	Deformation Mechanisms of Carbon Fibres and Carbon Fibre Composites. , 2017, , 341-357.		Ο
60	Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science, 2016, 354, 1257-1260.	6.0	676
61	Mechanical Stability of Flexible Graphene-Based Displays. ACS Applied Materials & Interfaces, 2016, 8, 22605-22614.	4.0	56
62	Photonic Crystals for Enhanced Light Extraction from 2D Materials. ACS Photonics, 2016, 3, 2515-2520.	3.2	48
63	Hybrid multifunctional graphene/glass-fibre polypropylene composites. Composites Science and Technology, 2016, 137, 44-51.	3.8	93
64	The role of interlayer adhesion in graphene oxide upon its reinforcement of nanocomposites. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150283.	1.6	23
65	Tensile failure phenomena in carbon fibres. Carbon, 2016, 107, 474-481.	5.4	36
66	Effect of the <scp>C/O</scp> ratio in graphene oxide materials on the reinforcement of epoxyâ€based nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 281-291.	2.4	47
67	Effect of the orientation of graphene-based nanoplatelets upon the Young's modulus of nanocomposites. Composites Science and Technology, 2016, 123, 125-133.	3.8	137
68	Carbon Nanotubes and Nanotube-Based Composites: Deformation Micromechanics. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2016, , 51-74.	0.3	0
69	The microstructure of a graphene-reinforced tennis racquet. Journal of Materials Science, 2016, 51, 3861-3867.	1.7	24
70	Carbon Fibre Composites: Deformation Micromechanics Analysed using Raman Spectroscopy. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2016, , 29-50.	0.3	1
71	Multilayer stacking and metal deposition effects on large area graphene on GaAs. Carbon, 2016, 96, 83-90.	5.4	10
72	Interfacial and internal stress transfer in carbon nanotube based nanocomposites. Journal of Materials Science, 2016, 51, 344-352.	1.7	28

#	Article	IF	CITATIONS
73	The effect of flake diameter on the reinforcement of few-layer graphene–PMMA composites. Composites Science and Technology, 2015, 111, 17-22.	3.8	58
74	Deformation of Wrinkled Graphene. ACS Nano, 2015, 9, 3917-3925.	7.3	143
75	Visible Spectrum Quantum Light Sources Based on In _{<i>x</i>} Ga _{1–<i>x</i>} N/GaN Quantum Dots. ACS Photonics, 2015, 2, 958-963.	3.2	20
76	Quantitative determination of the spatial orientation of graphene by polarized Raman spectroscopy. Carbon, 2015, 88, 215-224.	5.4	80
77	Graphene/elastomer nanocomposites. Carbon, 2015, 95, 460-484.	5.4	308
78	Raman Spectra and Mechanical Properties of Graphene/Polypropylene Nanocomposites. International Journal of Chemical Engineering and Applications (IJCEA), 2015, 6, 1-5.	0.3	24
79	Wideâ€Area Strain Sensors based upon Grapheneâ€Polymer Composite Coatings Probed by Raman Spectroscopy. Advanced Functional Materials, 2014, 24, 2865-2874.	7.8	122
80	Catalytic graphitization of electrospun cellulose nanofibres using silica nanoparticles. Reactive and Functional Polymers, 2014, 85, 235-238.	2.0	7
81	Factors controlling the strength of carbon fibres in tension. Composites Part A: Applied Science and Manufacturing, 2014, 57, 88-94.	3.8	67
82	Few layer graphene–polypropylene nanocomposites: the role of flake diameter. Faraday Discussions, 2014, 173, 379-390.	1.6	39
83	Coefficient of thermal expansion of carbon nanotubes measured by Raman spectroscopy. Applied Physics Letters, 2014, 104, .	1.5	97
84	Unique Identification of Single-Walled Carbon Nanotubes in Electrospun Fibers. Journal of Physical Chemistry C, 2014, 118, 24025-24033.	1.5	4
85	The rheological behaviour of concentrated dispersions of graphene oxide. Journal of Materials Science, 2014, 49, 6311-6320.	1.7	91
86	Raman Spectroscopy: Graphene and Steel Interaction. , 2014, , 1-6.		0
87	Reversible Loss of Bernal Stacking during the Deformation of Few-Layer Graphene in Nanocomposites. ACS Nano, 2013, 7, 7287-7294.	7.3	68
88	The role of functional groups on graphene oxide in epoxy nanocomposites. Polymer, 2013, 54, 5821-5829.	1.8	163
89	Deoxygenation of Graphene Oxide: Reduction or Cleaning?. Chemistry of Materials, 2013, 25, 3580-3588.	3.2	198
90	Control of the functionality of graphene oxide for its application inÂepoxy nanocomposites. Polymer, 2013, 54, 6437-6446.	1.8	252

ROBERT J YOUNG

#	Article	IF	CITATIONS
91	Supercapacitance from Cellulose and Carbon Nanotube Nanocomposite Fibers. ACS Applied Materials & Interfaces, 2013, 5, 9983-9990.	4.0	183
92	Carbon nanofibres produced from electrospun cellulose nanofibres. Carbon, 2013, 58, 66-75.	5.4	147
93	Graphene oxide and base-washed graphene oxide as reinforcements in PMMA nanocomposites. Composites Science and Technology, 2013, 88, 158-164.	3.8	71
94	The effect of nanostructure upon the deformation micromechanics of carbon fibres. Carbon, 2013, 52, 372-378.	5.4	57
95	The effect of nanostructure upon the compressive strength of carbon fibres. Journal of Materials Science, 2013, 48, 2104-2110.	1.7	25
96	Identifying the fluorescence of graphene oxide. Journal of Materials Chemistry C, 2013, 1, 338-342.	2.7	112
97	Two-Dimensional Nanocrystals: Structure, Properties and Applications. Arabian Journal for Science and Engineering, 2013, 38, 1289-1304.	1.1	6
98	Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets. Nanoscale, 2013, 5, 7202.	2.8	88
99	Interfacial Stress Transfer in Graphene Oxide Nanocomposites. ACS Applied Materials & Interfaces, 2013, 5, 456-463.	4.0	144
100	Investigation of the sp3 structure of carbon fibres using UV-Raman spectroscopy. Tanso, 2013, 2013, 243-247.	0.1	4
101	Carbon in Polymer. , 2013, , 695-728.		1
102	Graphene and graphene-based nanocomposites. SPR Nanoscience, 2012, , 145-179.	0.3	10
103	Optimizing the Reinforcement of Polymer-Based Nanocomposites by Graphene. ACS Nano, 2012, 6, 2086-2095.	7.3	255
104	The mechanics of graphene nanocomposites: A review. Composites Science and Technology, 2012, 72, 1459-1476.	3.8	1,076
105	Effective Young's Modulus of Bacterial and Microfibrillated Cellulose Fibrils in Fibrous Networks. Biomacromolecules, 2012, 13, 1340-1349.	2.6	189
106	Production of carbon fibres from a pyrolysed and graphitised liquid crystalline cellulose fibre precursor. Journal of Materials Science, 2012, 47, 5402-5410.	1.7	62
107	Strain Mapping in a Graphene Monolayer Nanocomposite. ACS Nano, 2011, 5, 3079-3084.	7.3	142
108	The Effective Young's Modulus of Carbon Nanotubes in Composites. ACS Applied Materials & Interfaces, 2011, 3, 433-440.	4.0	91

#	Article	IF	CITATIONS
109	Toughening of Epoxy Matrices with Reduced Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2011, 3, 2309-2317.	4.0	77
110	Silverâ€decorated carbon nanotube networks as SERS substrates. Journal of Raman Spectroscopy, 2011, 42, 1255-1262.	1.2	21
111	The Effect of Nanotube Content and Orientation on the Mechanical Properties of Polymer-Nanotube Composite Fibers: Separating Intrinsic Reinforcement from Orientational Effects. Advanced Functional Materials, 2011, 21, 364-371.	7.8	70
112	The Real Graphene Oxide Revealed: Stripping the Oxidative Debris from the Grapheneâ€like Sheets. Angewandte Chemie - International Edition, 2011, 50, 3173-3177.	7.2	569
113	Comparing single-walled carbon nanotubes and samarium oxide as strain sensors for model glass-fibre/epoxy composites. Composites Science and Technology, 2010, 70, 88-93.	3.8	30
114	Assessment of interface damage during the deformation of carbon nanotube composites. Journal of Materials Science, 2010, 45, 1425-1431.	1.7	27
115	Response to "Comment on the Effect of Stress Transfer Within Doubleâ€Walled Carbon Nanotubes upon Their Ability to Reinforce Composites― Advanced Materials, 2010, 22, 1180-1181.	11.1	3
116	Interfacial Stress Transfer in a Graphene Monolayer Nanocomposite. Advanced Materials, 2010, 22, 2694-2697.	11.1	551
117	Characterization of the adhesion of single-walled carbon nanotubes in poly(p-phenylene) Tj ETQq1 1 0.784314 r	gB <u>T /</u> Over	oc <mark>k 10 Tf 5</mark> 0
118	Formation mechanism of peapod-derived double-walled carbon nanotubes. Physical Review B, 2010, 82, .	1.1	29
119	Strong Dependence of Mechanical Properties on Fiber Diameter for Polymerâ `Nanotube Composite Fibers: Differentiating Defect from Orientation Effects. ACS Nano, 2010, 4, 6989-6997.	7.3	73
120	The Effect of Stress Transfer Within Doubleâ€Walled Carbon Nanotubes Upon Their Ability to Reinforce Composites. Advanced Materials, 2009, 21, 3591-3595.	11.1	71
121	SWNT composite coatings as a strain sensor on glass fibres in model epoxy composites. Composites Science and Technology, 2009, 69, 1547-1552.	3.8	36
122	Imaging microstructure and stress fields within a cross-ply composite laminate. Composites Science and Technology, 2009, 69, 567-574.	3.8	1
123	Deformation micromechanics of a model cellulose/glass fibre hybrid composite. Composites Science and Technology, 2009, 69, 2218-2224.	3.8	24
124	Graphene Oxide: Structural Analysis and Application as a Highly Transparent Support for Electron Microscopy. ACS Nano, 2009, 3, 2547-2556.	7.3	629
125	Deformation micromechanics of model glass fibre composites. Composites Science and Technology, 2008, 68, 848-853.	3.8	9
126	Deformation micromechanics of spider silk. Journal of Materials Science, 2008, 43, 3728-3732.	1.7	23

#	Article	IF	CITATIONS
127	Analysis of the structure and deformation of a woven composite lamina using X-ray microdiffraction. Journal of Materials Science, 2008, 43, 6724-6733.	1.7	3
128	Debundling, Isolation, and Identification of Carbon Nanotubes in Electrospun Nanofibers. Small, 2008, 4, 930-933.	5.2	18
129	Molecular and Crystal Deformation in Poly(aryl ether ether ketone) Fibers. Macromolecules, 2008, 41, 7519-7524.	2.2	18
130	Deformation of isolated single-wall carbon nanotubes in electrospun polymer nanofibres. Nanotechnology, 2007, 18, 235707.	1.3	64
131	Probing the internal geometry of a woven composite during deformation using an x-ray microdiffraction imaging technique. Applied Physics Letters, 2007, 91, .	1.5	8
132	Influence of Domain Orientation on the Mechanical Properties of Regenerated Cellulose Fibers. Biomacromolecules, 2007, 8, 624-630.	2.6	27
133	Effect of residual stresses upon the Raman radial breathing modes of nanotubes in epoxy composites. Composites Science and Technology, 2007, 67, 840-843.	3.8	21
134	Controlled interfacial adhesion of Twaron® aramid fibres in composites by the finish formulation. Composites Science and Technology, 2007, 67, 2027-2035.	3.8	46
135	Single-Walled Carbon Nanotube Networks Decorated with Silver Nanoparticles:  A Novel Graded SERS Substrate. Journal of Physical Chemistry C, 2007, 111, 16167-16173.	1.5	100
136	Characterization of carbon coatings on SiC monofilaments using Raman spectroscopy. Journal of Materials Science, 2007, 42, 5135-5141.	1.7	6
137	Molecular Orientation Distributions in a Biaxially oriented Poly(l-lactic Acid) Film Determined by Polarized Raman Spectroscopy. Biomacromolecules, 2006, 7, 2575-2582.	2.6	15
138	Molecular Orientation Distributions in Uniaxially Oriented Poly(l-lactic acid) Films Determined by Polarized Raman Spectroscopy. Macromolecules, 2006, 39, 3312-3321.	2.2	36
139	Interfacial micromechanics of technora fibre/epoxy composites. Journal of Materials Science, 2005, 40, 5381-5386.	1.7	6
140	Molecular Orientation Distributions in the Crystalline and Amorphous Regions of Uniaxially Oriented Isotactic Polypropylene Films Determined by Polarized Raman Spectroscopy. Journal of Macromolecular Science - Physics, 2005, 44, 967-991.	0.4	15
141	Modeling Crystal and Molecular Deformation in Regenerated Cellulose Fibers. Biomacromolecules, 2005, 6, 507-513.	2.6	111
142	Analysis of Stress Transfer in Two-Phase Polymer Systems Using Synchrotron Microfocus X-ray Diffraction. Macromolecules, 2004, 37, 9503-9509.	2.2	22
143	Analysis of Structure/Property Relationships in Silkworm (Bombyx mori) and Spider Dragline (Nephila) Tj ETQq1	1 0,78431 2.6	4 rgBT /Overlo £48
144	Raman-Active Nanostructured Materials for Use as Novel Stress-Sensitive Polymeric Coatings.	0.1	3

Materials Research Society Symposia Proceedings, 2003, 791, 1.

0.13

#	Article	IF	CITATIONS
145	Determination of residual stresses in SiC monofilament reinforced metal-matrix composites using Raman spectroscopy. Composites Part A: Applied Science and Manufacturing, 2002, 33, 1409-1416.	3.8	26
146	Raman spectroscopy study of high-modulus carbon fibres: effect of plasma-treatment on the interfacial properties of single-fibre–epoxy composites. Carbon, 2002, 40, 857-875.	5.4	84
147	Raman spectroscopy study of HM carbon fibres: effect of plasma treatment on the interfacial properties of single fibre/epoxy composites. Carbon, 2002, 40, 845-855.	5.4	190
148	A microstructural study of silicon carbide fibres through the use of Raman microscopy. Journal of Materials Science, 2001, 36, 55-66.	1.7	60
149	Other high modulus-high tenacity (HM-HT) fibres from linear polymers. , 2001, , 93-155.		9
150	The effect of solvents on spider silk studied by mechanical testing and single-fibre Raman spectroscopy. International Journal of Biological Macromolecules, 1999, 24, 295-300.	3.6	82
151	Preparation and use of diacetylene-containing polyesters for studying deformation micromechanics in model polyester-polyolefin blends. Macromolecular Symposia, 1997, 118, 395-400.	0.4	2
152	Elucidation of the hard segment transition in a diacetylene-containing copolyurethane using modulated differential scanning calorimetry. Polymer, 1997, 38, 981-983.	1.8	5
153	Interfacial micromechanics in thermoplastic and thermosetting matrix carbon fibre composites. Composites Part A: Applied Science and Manufacturing, 1996, 27, 973-980.	3.8	39
154	Measurement of thermal strains during compressive fragmentation in single-fibre composites by Raman spectroscopy. Composites Science and Technology, 1995, 55, 223-229.	3.8	17
155	Analysis of the fragmentation test for carbon-fibre/epoxy model composites by means of Raman spectroscopy. Composites Science and Technology, 1994, 52, 505-517.	3.8	84
156	Chain stretching in a poly(ethylene terephthalate) fibre. Polymer, 1994, 35, 3844-3847.	1.8	27
157	Molecular deformation and optomechanical behavior of glassy diacetylene-containing segmented block copolyurethanes. Macromolecules, 1992, 25, 684-691.	2.2	21
158	Synthesis, characterization, and structure of glassy diacetylene-containing segmented block copolyurethanes. Macromolecules, 1992, 25, 672-683.	2.2	31
159	Formation and properties of urethane-diacetylene segmented block copolymers. Polymer, 1991, 32, 1713-1725.	1.8	24
160	Deformation mechanisms in biaxially drawn polyethylene. Journal of Polymer Science, Part B: Polymer Physics, 1991, 29, 825-835.	2.4	22
161	Introduction to Polymers. , 1991, , .		470
162	Tensile properties of biaxially drawn polyethylene. Polymer, 1990, 31, 231-236.	1.8	31

#	Article	IF	CITATIONS
163	Application of raman microscopy to the analysis of high modulus polymer fibres and composites. British Polymer Journal, 1989, 21, 17-21.	0.7	38
164	The mechanical properties of epoxy resins. Journal of Materials Science, 1980, 15, 1814-1822.	1.7	113
165	The mechanical properties of epoxy resins. Journal of Materials Science, 1980, 15, 1823-1831.	1.7	134
166	Crack propagation in and fractography of epoxy resins. Journal of Materials Science, 1979, 14, 1609-1618.	1.7	72
167	Crack propagation and arrest in epoxy resins. Journal of Materials Science, 1976, 11, 776-779.	1.7	40
168	Time-dependent failure of poly(methyl methacrylate). Polymer, 1976, 17, 717-722.	1.8	32
169	Slow crack growth in acrylic bone cement. Journal of Biomedical Materials Research Part B, 1975, 9, 423-439.	3.0	38
170	Failure of brittle polymers by slow crack growth. Journal of Materials Science, 1975, 10, 1334-1342.	1.7	97
171	Introduction to Polymers. , 0, , .		324