Steffen Hardt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1185447/publications.pdf

Version: 2024-02-01

65

all docs

331670 1,634 65 21 h-index citations papers

39 g-index 65 65 1807 docs citations times ranked citing authors

302126

#	Article	IF	Citations
1	Flow and Drop Transport Along Liquid-Infused Surfaces. Annual Review of Fluid Mechanics, 2022, 54, 83-104.	25.0	42
2	On the thermocapillary migration between parallel plates. International Journal of Heat and Mass Transfer, 2022, 182, 121962.	4.8	7
3	Manipulation and control of droplets on surfaces in a homogeneous electric field. Nature Communications, 2022, 13, 289.	12.8	29
4	The spatial structure of electrostatically forced Faraday waves. Journal of Fluid Mechanics, 2022, 939,	3.4	7
5	Influence of insoluble surfactants on shear flow over a surface in Cassie state at large Péclet numbers. Journal of Fluid Mechanics, 2021, 907, .	3.4	13
6	Wetting of a liquid annulus in a capillary tube. Soft Matter, 2021, 17, 1756-1772.	2.7	6
7	Interaction of proteins with phase boundaries in aqueous two-phase systems under electric fields. Soft Matter, 2021, 17, 3929-3936.	2.7	7
8	Liquid Wells as Selfâ€Healing, Functional Analogues to Solid Vessels. Advanced Materials, 2021, 33, e2100117.	21.0	6
9	Microscale Hydrodynamic Cloaking and Shielding via Electro-Osmosis. Physical Review Letters, 2021, 126, 184502.	7.8	25
10	Breakup dynamics of capillary bridges on hydrophobic stripes. International Journal of Multiphase Flow, 2021, 140, 103582.	3.4	4
11	Hydrodynamic dispersion in Hele-Shaw flows with inhomogeneous wall boundary conditions. Journal of Fluid Mechanics, 2021, 925, .	3.4	3
12	Manipulation of single sub-femtolitre droplets via partial coalescence in a direct-current electric field. Flow, 2021, 1, .	2.6	0
13	Deformation modes of an oil-water interface under a local electric field: From Taylor cones to surface dimples. Physical Review Fluids, 2021, 6, .	2.5	1
14	Insights into the interplay of wetting and transport in mesoporous silica films. Journal of Colloid and Interface Science, 2020, 560, 369-378.	9.4	11
15	Drag force on spherical particle moving near a plane wall in highly rarefied gas. Journal of Fluid Mechanics, 2020, 883, .	3.4	5
16	The effective shear and dilatational viscosities of a particle-laden interface in the dilute limit. Journal of Fluid Mechanics, 2020, 903, .	3.4	0
17	Liquid plug formation from heated binary mixtures in capillary tubes. Journal of Fluid Mechanics, 2020, 889, .	3.4	6
18	Mass Transfer via Femtoliter Droplets in Ping-Pong Mode. Physical Review Applied, 2020, 13, .	3.8	3

#	Article	IF	CITATIONS
19	Electric-Field-Induced Pattern Formation in Layers of DNA Molecules at the Interface between Two Immiscible Liquids. Physical Review Letters, 2020, 124, 064501.	7.8	9
20	Intermediate States of Wetting on Hierarchical Superhydrophobic Surfaces. Langmuir, 2020, 36, 5517-5523.	3.5	16
21	Electro-osmotic flow enhancement over superhydrophobic surfaces. Physical Review Fluids, 2020, 5, .	2.5	13
22	Electroosmotic flow in small-scale channels induced by surface-acoustic waves. Physical Review Fluids, 2020, 5, .	2.5	6
23	Faraday instability of a liquid layer on a lubrication film. Journal of Fluid Mechanics, 2019, 879, 422-447.	3.4	12
24	On-Demand Production of Femtoliter Drops in Microchannels and Their Use as Biological Reaction Compartments. Analytical Chemistry, 2019, 91, 3484-3491.	6.5	18
25	No-contact electrostatic manipulation of droplets on liquid-infused surfaces: Experiments and numerical simulations. Applied Physics Letters, 2019, 114, 213704.	3.3	8
26	Stability of Evaporating Droplets on Chemically Patterned Surfaces. Langmuir, 2019, 35, 4868-4875.	3.5	16
27	Conformation and Dynamics of Long-Chain End-Tethered Polymers in Microchannels. Polymers, 2019, 11, 488.	4.5	9
28	Droplet Sorting and Manipulation on Patterned Two-Phase Slippery Lubricant-Infused Surface. ACS Applied Materials & Droplet Samp; Interfaces, 2019, 11, 16130-16138.	8.0	45
29	Electroosmotic flow in soft microchannels at high grafting densities. Physical Review Fluids, 2019, 4, .	2.5	30
30	Controlling the Trajectories of Nano/Micro Particles Using Light-Actuated Marangoni Flow. Nano Letters, 2018, 18, 6924-6930.	9.1	43
31	Stability and collapse of holes in liquid layers. Journal of Fluid Mechanics, 2018, 855, 1130-1155.	3.4	9
32	Relaxation of surface-tethered polymers under moderate confinement. Soft Matter, 2018, 14, 7926-7933.	2.7	1
33	Fast electric control of the droplet size in a microfluidic T-junction droplet generator. Applied Physics Letters, 2018, 112, 194102.	3.3	22
34	Interfacial instability of liquid films coating the walls of a parallel-plate channel and sheared by a gas flow. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	2
35	Electrokinetic manipulation of the von $K\tilde{A}_i$ rm \tilde{A}_i n vortex street in the wake of a confined cylinder. I. DC electric field. Physics of Fluids, 2018, 30, 082004.	4.0	4
36	Electrokinetics of a particle attached to a fluid interface: Electrophoretic mobility and interfacial deformation. Physical Review Fluids, 2018, 3, .	2.5	4

#	Article	IF	CITATIONS
37	Thermophoresis of Janus particles at large Knudsen numbers. Physical Review Fluids, 2018, 3, .	2.5	7
38	Flow and streaming potential of an electrolyte in a channel with an axial temperature gradient. Journal of Fluid Mechanics, 2017, 813, 1060-1111.	3.4	32
39	Electric-field-induced stretching of surface-tethered polyelectrolytes in a microchannel. Physical Review E, 2017, 96, 032503.	2.1	3
40	The stretching force on a tethered polymer in pressure-driven flow. Journal of Chemical Physics, 2017, 147, 034902.	3.0	10
41	From flow focusing to vortex formation in crossing microchannels. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	9
42	Stretching of surface-tethered polymers in pressure-driven flow under confinement. Soft Matter, 2017, 13, 6189-6196.	2.7	15
43	Stability of horizontal viscous fluid layers in a vertical arbitrary time periodic electric field. Physics of Fluids, 2017, 29, .	4.0	22
44	Exploiting cellular convection in a thick liquid layer to pattern a thin polymer film. Applied Physics Letters, 2016, 108, .	3.3	12
45	Drag and diffusion coefficients of a spherical particle attached to a fluid–fluid interface. Journal of Fluid Mechanics, 2016, 790, 607-618.	3.4	60
46	Conjugated liquid layers driven by the short-wavelength Bénard–Marangoni instability: experiment and numerical simulation. Journal of Fluid Mechanics, 2015, 783, 46-71.	3.4	10
47	Numerical simulation of a moving rigid body in a rarefied gas. Journal of Computational Physics, 2015, 292, 239-252.	3.8	17
48	Driven particles at fluid interfaces acting as capillary dipoles. Journal of Fluid Mechanics, 2015, 770, 5-26.	3.4	25
49	Electroosmotic flow in a slit nanochannel with superhydrophobic walls. Microfluidics and Nanofluidics, 2015, 19, 1465-1476.	2.2	14
50	Electro-osmotic flow along superhydrophobic surfaces with embedded electrodes. Physical Review E, 2014, 89, 063005.	2.1	8
51	Simple Fabrication of Robust Waterâ€Repellent Surfaces with Low Contactâ€Angle Hysteresis Based on Impregnation. Advanced Materials Interfaces, 2014, 1, 1300138.	3.7	101
52	Influence of the enclosed fluid on the flow over a microstructured surface in the Cassie state. Journal of Fluid Mechanics, 2014, 740, 168-195.	3.4	100
53	Line tension and reduction of apparent contact angle associated with electric double layers. Physics of Fluids, 2014, 26, .	4.0	14
54	Coupled self-organization: Thermal interaction between two liquid films undergoing long-wavelength instabilities. Physical Review E, 2014, 89, 053018.	2.1	3

Steffen Hardt

#	Article	IF	Citations
55	Particle dynamics and separation at liquid–liquid interfaces. Soft Matter, 2013, 9, 5438.	2.7	21
56	Particle Manipulation Based on Optically Controlled Free Surface Hydrodynamics. Angewandte Chemie - International Edition, 2013, 52, 7291-7295.	13.8	55
57	Microfluidics with aqueous two-phase systems. Lab on A Chip, 2012, 12, 434-442.	6.0	148
58	Size-dependent detachment of DNA molecules from liquid–liquid interfaces. Soft Matter, 2011, 7, 6320.	2.7	26
59	Electrophoretic transport of biomolecules across liquid–liquid interfaces. Journal of Physics Condensed Matter, 2011, 23, 279502.	1.8	2
60	Concentration and Size Separation of DNA Samples at Liquid–Liquid Interfaces. Analytical Chemistry, 2011, 83, 5476-5479.	6.5	30
61	Enabling the enhancement of electroosmotic flow over superhydrophobic surfaces by induced charges. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 376, 85-88.	4.7	19
62	Thermocapillary flow on superhydrophobic surfaces. Physical Review E, 2010, 82, 037301.	2.1	28
63	Protein Diffusion Across the Interface in Aqueous Two-Phase Systems. Langmuir, 2008, 24, 8547-8553.	3.5	33
64	Electrophoretic partitioning of proteins in two-phase microflows. Lab on A Chip, 2007, 7, 98-102.	6.0	68
65	Helical flows and chaotic mixing in curved micro channels. AICHE Journal, 2004, 50, 2297-2305.	3.6	300