Steffen Hardt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1185447/publications.pdf Version: 2024-02-01

STEEFEN HADDT

#	Article	IF	CITATIONS
1	Helical flows and chaotic mixing in curved micro channels. AICHE Journal, 2004, 50, 2297-2305.	3.6	300
2	Microfluidics with aqueous two-phase systems. Lab on A Chip, 2012, 12, 434-442.	6.0	148
3	Simple Fabrication of Robust Waterâ€Repellent Surfaces with Low Contactâ€Angle Hysteresis Based on Impregnation. Advanced Materials Interfaces, 2014, 1, 1300138.	3.7	101
4	Influence of the enclosed fluid on the flow over a microstructured surface in the Cassie state. Journal of Fluid Mechanics, 2014, 740, 168-195.	3.4	100
5	Electrophoretic partitioning of proteins in two-phase microflows. Lab on A Chip, 2007, 7, 98-102.	6.0	68
6	Drag and diffusion coefficients of a spherical particle attached to a fluid–fluid interface. Journal of Fluid Mechanics, 2016, 790, 607-618.	3.4	60
7	Particle Manipulation Based on Optically Controlled Free Surface Hydrodynamics. Angewandte Chemie - International Edition, 2013, 52, 7291-7295.	13.8	55
8	Droplet Sorting and Manipulation on Patterned Two-Phase Slippery Lubricant-Infused Surface. ACS Applied Materials & Interfaces, 2019, 11, 16130-16138.	8.0	45
9	Controlling the Trajectories of Nano/Micro Particles Using Light-Actuated Marangoni Flow. Nano Letters, 2018, 18, 6924-6930.	9.1	43
10	Flow and Drop Transport Along Liquid-Infused Surfaces. Annual Review of Fluid Mechanics, 2022, 54, 83-104.	25.0	42
11	Protein Diffusion Across the Interface in Aqueous Two-Phase Systems. Langmuir, 2008, 24, 8547-8553.	3.5	33
12	Flow and streaming potential of an electrolyte in a channel with an axial temperature gradient. Journal of Fluid Mechanics, 2017, 813, 1060-1111.	3.4	32
13	Concentration and Size Separation of DNA Samples at Liquid–Liquid Interfaces. Analytical Chemistry, 2011, 83, 5476-5479.	6.5	30
14	Electroosmotic flow in soft microchannels at high grafting densities. Physical Review Fluids, 2019, 4, .	2.5	30
15	Manipulation and control of droplets on surfaces in a homogeneous electric field. Nature Communications, 2022, 13, 289.	12.8	29
16	Thermocapillary flow on superhydrophobic surfaces. Physical Review E, 2010, 82, 037301.	2.1	28
17	Size-dependent detachment of DNA molecules from liquid–liquid interfaces. Soft Matter, 2011, 7, 6320.	2.7	26
18	Driven particles at fluid interfaces acting as capillary dipoles. Journal of Fluid Mechanics, 2015, 770, 5-26.	3.4	25

STEFFEN HARDT

#	Article	IF	CITATIONS
19	Microscale Hydrodynamic Cloaking and Shielding via Electro-Osmosis. Physical Review Letters, 2021, 126, 184502.	7.8	25
20	Stability of horizontal viscous fluid layers in a vertical arbitrary time periodic electric field. Physics of Fluids, 2017, 29, .	4.0	22
21	Fast electric control of the droplet size in a microfluidic T-junction droplet generator. Applied Physics Letters, 2018, 112, 194102.	3.3	22
22	Particle dynamics and separation at liquid–liquid interfaces. Soft Matter, 2013, 9, 5438.	2.7	21
23	Enabling the enhancement of electroosmotic flow over superhydrophobic surfaces by induced charges. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 376, 85-88.	4.7	19
24	On-Demand Production of Femtoliter Drops in Microchannels and Their Use as Biological Reaction Compartments. Analytical Chemistry, 2019, 91, 3484-3491.	6.5	18
25	Numerical simulation of a moving rigid body in a rarefied gas. Journal of Computational Physics, 2015, 292, 239-252.	3.8	17
26	Stability of Evaporating Droplets on Chemically Patterned Surfaces. Langmuir, 2019, 35, 4868-4875.	3.5	16
27	Intermediate States of Wetting on Hierarchical Superhydrophobic Surfaces. Langmuir, 2020, 36, 5517-5523.	3.5	16
28	Stretching of surface-tethered polymers in pressure-driven flow under confinement. Soft Matter, 2017, 13, 6189-6196.	2.7	15
29	Line tension and reduction of apparent contact angle associated with electric double layers. Physics of Fluids, 2014, 26, .	4.0	14
30	Electroosmotic flow in a slit nanochannel with superhydrophobic walls. Microfluidics and Nanofluidics, 2015, 19, 1465-1476.	2.2	14
31	Influence of insoluble surfactants on shear flow over a surface in Cassie state at large Péclet numbers. Journal of Fluid Mechanics, 2021, 907, .	3.4	13
32	Electro-osmotic flow enhancement over superhydrophobic surfaces. Physical Review Fluids, 2020, 5, .	2.5	13
33	Exploiting cellular convection in a thick liquid layer to pattern a thin polymer film. Applied Physics Letters, 2016, 108, .	3.3	12
34	Faraday instability of a liquid layer on a lubrication film. Journal of Fluid Mechanics, 2019, 879, 422-447.	3.4	12
35	Insights into the interplay of wetting and transport in mesoporous silica films. Journal of Colloid and Interface Science, 2020, 560, 369-378.	9.4	11
36	Conjugated liquid layers driven by the short-wavelength Bénard–Marangoni instability: experiment and numerical simulation. Journal of Fluid Mechanics, 2015, 783, 46-71.	3.4	10

STEFFEN HARDT

#	Article	IF	CITATIONS
37	The stretching force on a tethered polymer in pressure-driven flow. Journal of Chemical Physics, 2017, 147, 034902.	3.0	10
38	From flow focusing to vortex formation in crossing microchannels. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	9
39	Stability and collapse of holes in liquid layers. Journal of Fluid Mechanics, 2018, 855, 1130-1155.	3.4	9
40	Conformation and Dynamics of Long-Chain End-Tethered Polymers in Microchannels. Polymers, 2019, 11, 488.	4.5	9
41	Electric-Field-Induced Pattern Formation in Layers of DNA Molecules at the Interface between Two Immiscible Liquids. Physical Review Letters, 2020, 124, 064501.	7.8	9
42	Electro-osmotic flow along superhydrophobic surfaces with embedded electrodes. Physical Review E, 2014, 89, 063005.	2.1	8
43	No-contact electrostatic manipulation of droplets on liquid-infused surfaces: Experiments and numerical simulations. Applied Physics Letters, 2019, 114, 213704.	3.3	8
44	Interaction of proteins with phase boundaries in aqueous two-phase systems under electric fields. Soft Matter, 2021, 17, 3929-3936.	2.7	7
45	On the thermocapillary migration between parallel plates. International Journal of Heat and Mass Transfer, 2022, 182, 121962.	4.8	7
46	Thermophoresis of Janus particles at large Knudsen numbers. Physical Review Fluids, 2018, 3, .	2.5	7
47	The spatial structure of electrostatically forced Faraday waves. Journal of Fluid Mechanics, 2022, 939,	3.4	7
48	Liquid plug formation from heated binary mixtures in capillary tubes. Journal of Fluid Mechanics, 2020, 889, .	3.4	6
49	Wetting of a liquid annulus in a capillary tube. Soft Matter, 2021, 17, 1756-1772.	2.7	6
50	Liquid Wells as Selfâ€Healing, Functional Analogues to Solid Vessels. Advanced Materials, 2021, 33, e2100117.	21.0	6
51	Electroosmotic flow in small-scale channels induced by surface-acoustic waves. Physical Review Fluids, 2020, 5, .	2.5	6
52	Drag force on spherical particle moving near a plane wall in highly rarefied gas. Journal of Fluid Mechanics, 2020, 883, .	3.4	5
53	Electrokinetic manipulation of the von Kármán vortex street in the wake of a confined cylinder. I. DC electric field. Physics of Fluids, 2018, 30, 082004.	4.0	4
54	Breakup dynamics of capillary bridges on hydrophobic stripes. International Journal of Multiphase Flow, 2021, 140, 103582.	3.4	4

STEFFEN HARDT

#	Article	IF	CITATIONS
55	Electrokinetics of a particle attached to a fluid interface: Electrophoretic mobility and interfacial deformation. Physical Review Fluids, 2018, 3, .	2.5	4
56	Coupled self-organization: Thermal interaction between two liquid films undergoing long-wavelength instabilities. Physical Review E, 2014, 89, 053018.	2.1	3
57	Electric-field-induced stretching of surface-tethered polyelectrolytes in a microchannel. Physical Review E, 2017, 96, 032503.	2.1	3
58	Mass Transfer via Femtoliter Droplets in Ping-Pong Mode. Physical Review Applied, 2020, 13, .	3.8	3
59	Hydrodynamic dispersion in Hele-Shaw flows with inhomogeneous wall boundary conditions. Journal of Fluid Mechanics, 2021, 925, .	3.4	3
60	Electrophoretic transport of biomolecules across liquid–liquid interfaces. Journal of Physics Condensed Matter, 2011, 23, 279502.	1.8	2
61	Interfacial instability of liquid films coating the walls of a parallel-plate channel and sheared by a gas flow. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	2
62	Relaxation of surface-tethered polymers under moderate confinement. Soft Matter, 2018, 14, 7926-7933.	2.7	1
63	Deformation modes of an oil-water interface under a local electric field: From Taylor cones to surface dimples. Physical Review Fluids, 2021, 6, .	2.5	1
64	The effective shear and dilatational viscosities of a particle-laden interface in the dilute limit. Journal of Fluid Mechanics, 2020, 903, .	3.4	0
65	Manipulation of single sub-femtolitre droplets via partial coalescence in a direct-current electric field. Flow, 2021, 1, .	2.6	0