Tetsuji Miura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11850/publications.pdf

Version: 2024-02-01

141 papers 6,159 citations

50276 46 h-index 72 g-index

144 all docs

144 docs citations

144 times ranked 7280 citing authors

#	Article	IF	CITATIONS
1	Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Failure Reviews, 2013, 18, 149-166.	3.9	368
2	Ischaemic conditioning and targeting reperfusion injury: a 30Âyear voyage of discovery. Basic Research in Cardiology, 2016, 111, 70.	5.9	257
3	Modulation of the mitochondrial permeability transition pore complex in GSK-3β-mediated myocardial protection. Journal of Molecular and Cellular Cardiology, 2007, 43, 564-570.	1.9	209
4	Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy. Basic Research in Cardiology, 2008, 103, 501-513.	5.9	149
5	Ischemic preconditioning activates AMPK in a PKC-dependent manner and induces GLUT4 up-regulation in the late phase of cardioprotection. Cardiovascular Research, 2004, 61, 610-619.	3.8	136
6	Opening of mitochondrial KATP channel occurs downstream of PKC-ε activation in the mechanism of preconditioning. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H440-H447.	3.2	131
7	GSK-3.BETA., a Therapeutic Target for Cardiomyocyte Protection. Circulation Journal, 2009, 73, 1184-1192.	1.6	125
8	Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning. Cardiovascular Diabetology, 2012, 11, 67.	6.8	125
9	Emerging beneficial roles of sirtuins in heart failure. Basic Research in Cardiology, 2012, 107, 273.	5.9	123
10	Mitochondrial kinase signalling pathways in myocardial protection from ischaemia/reperfusion-induced necrosis. Cardiovascular Research, 2010, 88, 7-15.	3.8	118
11	Empagliflozin normalizes the size and number of mitochondria and prevents reduction in mitochondrial size after myocardial infarction in diabetic hearts. Physiological Reports, 2018, 6, e13741.	1.7	118
12	Endoplasmic Reticulum Stress in Diabetic Hearts Abolishes Erythropoietin-Induced Myocardial Protection by Impairment of Phospho–Glycogen Synthase Kinase-3β–Mediated Suppression of Mitochondrial Permeability Transition. Diabetes, 2009, 58, 2863-2872.	0.6	114
13	Glycogen Synthase Kinase-3 Inactivation Is Not Required for Ischemic Preconditioning or Postconditioning in the Mouse. Circulation Research, 2008, 103, 307-314.	4.5	111
14	Roles of mitochondrial ATP-sensitive K channels and PKC in anti-infarct tolerance afforded by adenosine A1receptor activation. Journal of the American College of Cardiology, 2000, 35, 238-245.	2.8	104
15	Erythropoietin affords additional cardioprotection to preconditioned hearts by enhanced phosphorylation of glycogen synthase kinase-31². American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H748-H755.	3.2	103
16	Local Production of Fatty Acid–Binding Protein 4 in Epicardial/Perivascular Fat and Macrophages Is Linked to Coronary Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 825-834.	2.4	98
17	Infarct Size Limitation by a New Na-H Exchange Inhibitor, Hoe 642: Difference From Preconditioning in the Role of Protein Kinase C. Journal of the American College of Cardiology, 1997, 29, 693-701.	2.8	95
18	The mPTP and its regulatory proteins: final common targets of signalling pathways for protection against necrosis. Cardiovascular Research, 2012, 94, 181-189.	3.8	89

#	Article	IF	Citations
19	Quantitative Assessment of Left Ventricular and Left Atrial Functions by Strain Rate Imaging in Diabetic Patients with and without Hypertension. Echocardiography, 2009, 26, 262-271.	0.9	86
20	Intracardiac fibroblasts, but not bone marrow derived cells, are the origin of myofibroblasts in myocardial infarct repair. Cardiovascular Pathology, 2005, 14, 241-246.	1.6	82
21	Empagliflozin, an SGLT2 Inhibitor, Reduced the Mortality Rate after Acute Myocardial Infarction with Modification of Cardiac Metabolomes and Antioxidants in Diabetic Rats. Journal of Pharmacology and Experimental Therapeutics, 2019, 368, 524-534.	2.5	82
22	Evidence for the delayed effect in human ischemic preconditioning. Journal of the American College of Cardiology, 1999, 34, 1966-1974.	2.8	80
23	Translocation of Glycogen Synthase Kinase- $3\hat{l}^2$ (GSK- $3\hat{l}^2$), a Trigger of Permeability Transition, Is Kinase Activity-dependent and Mediated by Interaction with Voltage-dependent Anion Channel 2 (VDAC2). Journal of Biological Chemistry, 2014, 289, 29285-29296.	3.4	80
24	Reduction of endoplasmic reticulum stress by 4-phenylbutyric acid prevents the development of hypoxia-induced pulmonary arterial hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1314-H1323.	3.2	79
25	Protective role of gap junctions in preconditioning against myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H214-H221.	3.2	74
26	Mitochondria and GSK- $3\hat{l}^2$ in Cardioprotection Against Ischemia/Reperfusion Injury. Cardiovascular Drugs and Therapy, 2010, 24, 255-263.	2.6	68
27	Plasma Xanthine Oxidoreductase Activity as a Novel Biomarker of Metabolic Disorders in a General Population. Circulation Journal, 2018, 82, 1892-1899.	1.6	68
28	Cardioprotective Mechanism of Ischemic Preconditioning Is Impaired by Postinfarct Ventricular Remodeling Through Angiotensin II Type 1 Receptor Activation. Circulation, 2000, 102, 458-463.	1.6	65
29	Infarct size limitation by nicorandil. Journal of the American College of Cardiology, 2002, 40, 1523-1530.	2.8	65
30	Progression of myocardial infarction in a collateral flow deficient species International Heart Journal, 1989, 30, 695-708.	0.6	64
31	Determinants of infarct size during permanent occlusion of a coronary artery in the closed chest dog. Journal of the American College of Cardiology, 1987, 9, 647-654.	2.8	63
32	Ser9 phosphorylation of mitochondrial GSK- $3\hat{l}^2$ is a primary mechanism of cardiomyocyte protection by erythropoietin against oxidant-induced apoptosis. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H2079-H2086.	3.2	63
33	Roles of Tyrosine Kinase and Protein Kinase C in Infarct Size Limitation by Repetitive Ischemic Preconditioning in the Rat. Journal of Cardiovascular Pharmacology, 2000, 35, 345-352.	1.9	62
34	Role of ER Stress in Ventricular Contractile Dysfunction in Type 2 Diabetes. PLoS ONE, 2012, 7, e39893.	2.5	62
35	KATP channel opening is an endogenous mechanism of protection against the no-reflow phenomenon but its function is compromised by hypercholesterolemia. Journal of the American College of Cardiology, 2002, 40, 1339-1346.	2.8	61
36	Alteration in Erythropoietin-Induced Cardioprotective Signaling by Postinfarct Ventricular Remodeling. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 68-75.	2.5	61

#	Article	IF	CITATIONS
37	Short Communication: Angiotensin II Type 1 Receptor–Mediated Upregulation of Calcineurin Activity Underlies Impairment of Cardioprotective Signaling in Diabetic Hearts. Circulation Research, 2010, 106, 129-132.	4.5	60
38	Pivotal Role of mTORC2 and Involvement of Ribosomal Protein S6 in Cardioprotective Signaling. Circulation Research, 2014, 114, 1268-1280.	4.5	59
39	Mitochondrial ATP-sensitive K+channels play a role in cardioprotection by Na+-H+exchange inhibition against ischemia/reperfusion injury. Journal of the American College of Cardiology, 2001, 37, 957-963.	2.8	56
40	Impairment of cardioprotective PI3K-Akt signaling by post-infarct ventricular remodeling is compensated by an ERK-mediated pathway. Basic Research in Cardiology, 2007, 102, 163-170.	5.9	55
41	Role of the gap junction in ischemic preconditioning in the heart. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1115-H1125.	3.2	53
42	ATP-Sensitive K+ Channel Openers: Old Drugs with New Clinical Benefits for the Heart. Current Vascular Pharmacology, 2003, 1, 251-258.	1.7	53
43	Captopril potentiates the myocardial infarct size-limiting effect of ischemic preconditioning through bradykinin B2 receptor activation. Journal of the American College of Cardiology, 1996, 28, 1616-1622.	2.8	49
44	Inhibition of DPP-4 reduces acute mortality after myocardial infarction with restoration of autophagic response in type 2 diabetic rats. Cardiovascular Diabetology, 2015, 14, 103.	6.8	49
45	Limitation of myocardial infarct size by adenosine A1 receptor activation is abolished by protein kinase C inhibitors in the rabbit. Cardiovascular Research, 1995, 29, 682-688.	3.8	48
46	Contribution of both the sarcolemmal K ATP and mitochondrial K ATP channels to infarct size limitation by K ATP channel openers: differences from preconditioning in the role of sarcolemmal K ATP channels. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 364, 226-232.	3.0	47
47	LIMITATION OF INFARCT SIZE BY ERYTHROPOIETIN IS ASSOCIATED WITH TRANSLOCATION OF Akt TO THE MITOCHONDRIA AFTER REPERFUSION. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 812-819.	1.9	46
48	Infarct-Size Limitation by Preconditioning is Enhanced by Dipyridamole Administered Before But Not After Preconditioning: Evidence for the Role of Interstitial Adenosine Level During Preconditioning as a Primary Determinant of Cardioprotection. Journal of Cardiovascular Pharmacology, 1998, 31, 1-9.	1.9	45
49	Role of connexin-43 in protective PI3K-Akt-GSK-3 \hat{I}^2 signaling in cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H2536-H2544.	3.2	44
50	ADENOSINE AND PRECONDITIONING REVISITED. Clinical and Experimental Pharmacology and Physiology, 1999, 26, 92-99.	1.9	42
51	mTORC1 inhibition attenuates necroptosis through RIP1 inhibition-mediated TFEB activation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 165552.	3.8	42
52	Drug Development Targeting the Glycogen Synthase Kinase-3β (GSK-3β)-Mediated Signal Transduction Pathway: Role of GSK-3β in Myocardial Protection Against Ischemia/Reperfusion Injury. Journal of Pharmacological Sciences, 2009, 109, 162-167.	2.5	41
53	From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on "New frontiers in cardiovascular research― Basic Research in Cardiology, 2016, 111, 69.	5 . 9	41
54	Canagliflozin, a sodium–glucose cotransporterÂ2 inhibitor, normalizes renal susceptibility to typeÂ1 cardiorenal syndrome through reduction of renal oxidative stress in diabetic rats. Journal of Diabetes Investigation, 2019, 10, 933-946.	2.4	40

#	Article	IF	Citations
55	Independent links between plasma xanthine oxidoreductase activity and levels of adipokines. Journal of Diabetes Investigation, 2019, 10, 1059-1067.	2.4	40
56	Hypertensive Hypertrophied Myocardium Is Vulnerable to Infarction and Refractory to Erythropoietin-Induced Protection. Hypertension, 2011, 57, 110-115.	2.7	37
57	Activation of ERK and suppression of calcineurin are interacting mechanisms of cardioprotection afforded by Î-opioid receptor activation. Basic Research in Cardiology, 2006, 101, 418-426.	5.9	36
58	Î-Opioid receptor activation before ischemia reduces gap junction permeability in ischemic myocardium by PKC-ε-mediated phosphorylation of connexin 43. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1425-H1431.	3.2	36
59	MitoKATP channel activation suppresses gap junction permeability in the ischemic myocardium by an ERK-dependent mechanism. Cardiovascular Research, 2006, 70, 374-383.	3.8	35
60	Effects of Parental Hypertension on Longitudinal Trends in Blood Pressure and Plasma Metabolic Profile. Hypertension, 2012, 60, 1124-1130.	2.7	35
61	Time window for the contribution of the delta-opioid receptor to cardioprotection by ischemic preconditioning in the rat heart. Cardiovascular Drugs and Therapy, 1998, 12, 365-373.	2.6	34
62	The role of ADAM protease in the tyrosine kinase-mediated trigger mechanism of ischemic preconditioning. Cardiovascular Research, 2004, 62, 167-175.	3.8	34
63	Suppression of autophagic flux contributes to cardiomyocyte death by activation of necroptotic pathways. Journal of Molecular and Cellular Cardiology, 2017, 108, 203-213.	1.9	34
64	Differential Phenotypes in Perivascular Adipose Tissue Surrounding the Internal Thoracic Artery and Diseased Coronary Artery. Journal of the American Heart Association, 2019, 8, e011147.	3.7	34
65	Glibenclamide, a Blocker of ATP-Sensitive Potassium Channels, Abolishes Infarct Size Limitation by Preconditioning in Rabbits Anesthetized with Xylazine/Pentobarbital but Not with Pentobarbital Alone. Journal of Cardiovascular Pharmacology, 1995, 25, 531-538.	1.9	33
66	Roles of Cx43-associated protein kinases in suppression of gap junction-mediated chemical coupling by ischemic preconditioning. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H396-H403.	3.2	33
67	Blockade of the Na+-Ca2+ exchanger is more efficient than blockade of the Na+-H+ exchanger for protection of the myocardium from lethal reperfusion injury. Cardiovascular Drugs and Therapy, 2002, 16, 295-301.	2.6	32
68	U-shaped relationship between serum uric acid level and decline in renal function during a 10-year period in female subjects: BOREAS-CKD2. Hypertension Research, 2021, 44, 107-116.	2.7	31
69	EFFECT OF NICORANDIL ON POST-ISCHAEMIC CONTRACTILE DYSFUNCTION IN THE HEART: ROLES OF ITS ATP-SENSITIVE K' CHANNEL OPENING PROPERTY AND NITRATE PROPERTY. Clinical and Experimental Pharmacology and Physiology, 1993, 20, 595-602.	1.9	29
70	Accelerated Recovery of Mitochondrial Membrane Potential by GSK-3Î ² Inactivation Affords Cardiomyocytes Protection from Oxidant-Induced Necrosis. PLoS ONE, 2014, 9, e112529.	2.5	29
71	The impact of elevation of serum uric acid level on the natural history of glomerular filtration rate (GFR) and its sex difference. Nephrology Dialysis Transplantation, 2014, 29, 1932-1939.	0.7	29
72	Suppressed autophagic response underlies augmentation of renal ischemia/reperfusion injury by type 2 diabetes. Scientific Reports, 2017, 7, 5311.	3.3	29

#	Article	IF	Citations
73	A call to action for new global approaches to cardiovascular disease drug solutions. European Heart Journal, 2021, 42, 1464-1475.	2.2	29
74	Interruption of signal transduction between G protein and PKC-epsilon underlies the impaired myocardial response to ischemic preconditioning in postinfarct remodeled hearts. Molecular and Cellular Biochemistry, 2003, 247, 185-193.	3.1	28
75	Reduction of endoplasmic reticulum stress inhibits neointima formation after vascular injury. Scientific Reports, 2014, 4, 6943.	3.3	27
76	"Ballooning―patterns in takotsubo cardiomyopathy reflect different clinical backgrounds and outcomes: a BOREAS-TCM study. Heart and Vessels, 2015, 30, 789-797.	1.2	26
77	Type 2 diabetes induces subendocardium-predominant reduction in transient outward K ⁺ current with downregulation of Kv4.2 and KChIP2. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1054-H1065.	3.2	25
78	Role of the angiotensin II type 1 receptor in preconditioning against infarction. Coronary Artery Disease, 1997, 8, 343-350.	0.7	24
79	Critical timing of mitochondrial K ATP channel opening for enhancement of myocardial tolerance against infarction. Basic Research in Cardiology, 2001, 96, 446-453.	5.9	24
80	Excessive degradation of adenine nucleotides by up-regulated AMP deaminase underlies afterload-induced diastolic dysfunction in the type 2 diabetic heart. Journal of Molecular and Cellular Cardiology, 2015, 80, 136-145.	1.9	24
81	Insufficient activation of Akt upon reperfusion because of its novel modification by reduced PP2A-B55î± contributes to enlargement of infarct size by chronic kidney disease. Basic Research in Cardiology, 2017, 112, 31.	5.9	24
82	Diabetes increases the susceptibility to acute kidney injury after myocardial infarction through augmented activation of renal Toll-like receptors in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H1130-H1142.	3.2	24
83	Annual change in plasma xanthine oxidoreductase activity is associated with changes in liver enzymes and body weight. Endocrine Journal, 2019, 66, 777-786.	1.6	23
84	Empagliflozin attenuates acute kidney injury after myocardial infarction in diabetic rats. Scientific Reports, 2020, 10, 7238.	3.3	23
85	Role of microtubules in ischemic preconditioning against myocardial infarction. Cardiovascular Research, 2004, 64, 322-330.	3.8	21
86	Cytoprotective regulation of the mitochondrial permeability transition pore is impaired in type 2 diabetic Goto–Kakizaki rat hearts. Journal of Molecular and Cellular Cardiology, 2012, 53, 870-879.	1.9	21
87	Clinical impact of myocardial mTORC1 activation in nonischemic dilated cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2016, 91, 6-9.	1.9	21
88	Roles of phospho-GSK- $3\hat{l}^2$ in myocardial protection afforded by activation of the mitochondrial KATP channel. Journal of Molecular and Cellular Cardiology, 2010, 49, 762-770.	1.9	20
89	Does glycemic control reverse dispersion of ventricular repolarization in type 2 diabetes?. Cardiovascular Diabetology, 2014, 13, 125.	6.8	20
90	Fatty liver index is independently associated with deterioration of renal function during a 10-year period in healthy subjects. Scientific Reports, 2021, 11, 8606.	3.3	20

#	Article	IF	Citations
91	Elevated Fatty Liver Index Is Independently Associated With New Onset of Hypertension During a 10‥ear Period in Both Male and Female Subjects. Journal of the American Heart Association, 2021, 10, e021430.	3.7	20
92	Mitochondrial K ATP channel-dependent and -independent phases of ischemic preconditioning against myocardial infarction in the rat. Basic Research in Cardiology, 2003, 98, 50-58.	5.9	19
93	High level of fatty liver index predicts new onset of diabetes mellitus during a 10-year period in healthy subjects. Scientific Reports, 2021, 11, 12830.	3.3	19
94	Infarct size limitation by bradykinin receptor activation is mediated by the mitochondrial but not by the sarcolemmal K(ATP) channel. Cardiovascular Drugs and Therapy, 2000, 14, 497-502.	2.6	18
95	Blockade of Angiotensin II Type 1 Receptors Suppressed Free Radical Production and Preserved Coronary Endothelial Function in the Rabbit Heart After Myocardial Infarction. Journal of Cardiovascular Pharmacology, 2002, 39, 49-57.	1.9	18
96	Unexpected high plasma xanthine oxidoreductase activity in female subjects with low levels of uric acid. Endocrine Journal, 2018, 65, 1083-1092.	1.6	18
97	A Call to Action for New Global Approaches to Cardiovascular Disease Drug Solutions. Circulation, 2021, 144, 159-169.	1.6	18
98	Does p53 Inhibition Suppress Myocardial Ischemia–Reperfusion Injury?. Journal of Cardiovascular Pharmacology and Therapeutics, 2018, 23, 350-357.	2.0	17
99	Distinct impacts of sleep-disordered breathing on glycemic variability in patients with and without diabetes mellitus. PLoS ONE, 2017, 12, e0188689.	2.5	17
100	Low urine pH predicts new onset of diabetes mellitus during a 10â€year period in men: BOREASâ€DM1 study. Journal of Diabetes Investigation, 2020, 11, 1490-1497.	2.4	15
101	Glucagon-Like Peptide-1 Secretory Function as an Independent Determinant of Blood Pressure: Analysis in the Tanno-Sobetsu Study. PLoS ONE, 2013, 8, e67578.	2.5	14
102	Chronic Treatment With an Erythropoietin Receptor Ligand Prevents Chronic Kidney Disease–Induced Enlargement of Myocardial Infarct Size. Hypertension, 2016, 68, 697-706.	2.7	14
103	Translational regulation by miR-301b upregulates AMP deaminase in diabetic hearts. Journal of Molecular and Cellular Cardiology, 2018, 119, 138-146.	1.9	14
104	Antiatherosclerotic Phenotype of Perivascular Adipose Tissue Surrounding the Saphenous Vein in Coronary Artery Bypass Grafting. Journal of the American Heart Association, 2021, 10, e018905.	3.7	11
105	Independent association of plasma xanthine oxidoreductase activity with hypertension in nondiabetic subjects not using medication. Hypertension Research, 2021, 44, 1213-1220.	2.7	11
106	Successful Transcatheter Diagnosis and Medical Treatment of Right Atrial Involvement in IgG4-related Disease. International Heart Journal, 2018, 59, 1155-1160.	1.0	10
107	Independent Association of Fatty Liver Index With Left Ventricular Diastolic Dysfunction in Subjects Without Medication. American Journal of Cardiology, 2021, 158, 139-146.	1.6	10
108	Diseaseâ€associated polymorphisms in 9p21 are not associated with extreme longevity. Geriatrics and Gerontology International, 2015, 15, 797-803.	1.5	9

#	Article	IF	CITATIONS
109	Activation of the angiotensin II receptor promotes autophagy in renal proximal tubular cells and affords protection from ischemia/reperfusion injury. Journal of Pharmacological Sciences, 2021, 145, 187-197.	2.5	9
110	Favorable response to an endothelin receptor antagonist in mitomycin-induced pulmonary veno-occlusive disease with pulmonary capillary hemangiomatosis. International Journal of Cardiology, 2016, 212, 245-247.	1.7	8
111	Screening of primary aldosteronism by clinical features and daily laboratory tests. Journal of Hypertension, 2018, 36, 326-334.	0.5	8
112	Insulin Resistance is Associated with Longitudinal Changes of Cardiac Repolarization Heterogeneity in Apparently Healthy Subjects. Cardiology and Therapy, 2019, 8, 239-251.	2.6	8
113	Increased LDL-cholesterol level is associated with deterioration of renal function in males. CKJ: Clinical Kidney Journal, 2022, 15, 1888-1895.	2.9	8
114	HASF, a PKC-l $\hat{\mu}$ activator with novel features for cardiomyocyte protection. Journal of Molecular and Cellular Cardiology, 2014, 69, 1-3.	1.9	7
115	Xanthine oxidoreductase-mediated injury is amplified by upregulated AMP deaminase in type 2 diabetic rat hearts under the condition of pressure overload. Journal of Molecular and Cellular Cardiology, 2021, 154, 21-31.	1.9	7
116	Erythropoietin (EPO) Affords More Potent Cardioprotection by Activation of Distinct Signaling to Mitochondrial Kinases Compared with Carbamylated EPO. Cardiovascular Drugs and Therapy, 2010, 24, 401-408.	2.6	6
117	Comparative effects of telmisartan and valsartan as add-on agents for hypertensive patients with morning blood pressure insufficiently controlled by amlodipine monotherapy. Hypertension Research, 2014, 37, 225-231.	2.7	6
118	Detection of Urinary Mulberry Bodies Leads to Diagnosis of Fabry Cardiomyopathy. Circulation: Heart Failure, $2017, 10, .$	3.9	6
119	Does delayed no-reflow phenomenon cause myocardial necrosis?. Cardiovascular Pathology, 1993, 2, 225-230.	1.6	5
120	Relationship between free radicals and adenosine in the mechanism of preconditioning: are they interrelated or independent triggers?. Molecular and Cellular Biochemistry, 2000, 211, 51-59.	3.1	5
121	Does enhanced expression of the Na+-Ca2+ exchanger increase myocardial vulnerability to ischemia/reperfusion injury in rabbit hearts?. Molecular and Cellular Biochemistry, 2003, 248, 141-147.	3.1	5
122	Everolimus-responsive dilated cardiomyopathy in tuberous sclerosis:. European Heart Journal, 2015, 36, 2338-2338.	2.2	4
123	Longitudinal impact of dapagliflozin treatment on ventricular repolarization heterogeneity in patients with typeÂ2 diabetes. Journal of Diabetes Investigation, 2019, 10, 1593-1594.	2.4	4
124	Distinct intra-mitochondrial localizations of pro-survival kinases and regulation of their functions by DUSP5 and PHLPP-1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165851.	3.8	4
125	Prediction of new onset of diabetes mellitus during a 10-year period by using a combination of levels of alanine aminotransferase and \hat{l}^3 -glutamyl transferase. Endocrine Journal, 2021, 68, 1391-1402.	1.6	4
126	Endothelium-dependent Coronary Response is Impaired in the Myocardium at an Early Phase of Post-infarct Remodeling International Heart Journal, 2000, 41, 743-755.	0.6	4

#	Article	IF	CITATIONS
127	Late gadolinium enhancement image masquerading as hypertrophic cardiomyopathy in Fabry disease receiving enzyme replacement therapy. International Journal of Cardiology, 2016, 203, 136-137.	1.7	3
128	Involvement of necroptosis in contrast-induced nephropathy in a rat CKD model. Clinical and Experimental Nephrology, 2021, 25, 708-717.	1.6	3
129	Protecting ischemic hearts by modulation of SR calcium handling. Cardiovascular Research, 2007, 75, 453-454.	3.8	2
130	Role of Erythropoiesis-Stimulating Agents in Cardiovascular Protection in CKD Patients: Reappraisal of Their Impact and Mechanisms. Cardiovascular Drugs and Therapy, 2022, , 1.	2.6	2
131	Does a Reduction in the Glomerular Filtration Rate Increase the Overall Severity of Coronary Artery Stenosis?. Internal Medicine, 2016, 55, 871-877.	0.7	1
132	Vanishing Cardiac Tumor. Circulation: Cardiovascular Imaging, 2019, 12, e009689.	2.6	1
133	Protective effect of treatment with a continuous erythropoietin receptor activator on CKD-induced myocardial intolerance to ischemia/reperfusion injury is lost by use of its excessive dose. Journal of Molecular and Cellular Cardiology, 2020, 140, 41-42.	1.9	1
134	Diabetes modulation of the myocardial infarction-acute kidney injury axis. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H394-H405.	3.2	1
135	Are Treatment Effects of ACEI and ARB in Post-MI Patients Homogeneous?. Circulation Journal, 2009, 73, 820-821.	1.6	0
136	Cytoskeletal Proteins. Circulation Journal, 2010, 74, 2295-2296.	1.6	0
137	Epicardium and pericardium: A joint force for infarct repair?. Journal of Molecular and Cellular Cardiology, 2010, 48, 579-581.	1.9	0
138	Cardiac Light Chain Deposition Disease Mimicking Immunoglobulin Light Chain Amyloidosis. Circulation: Cardiovascular Imaging, 2020, 13, e010478.	2.6	0
139	Reduction in GLP-1 secretory capacity may be a novel independent risk factor of coronary artery stenosis. Scientific Reports, 2021, 11, 15578.	3.3	0
140	Pathology and Treatment of Cardiac Insufficiency Due to Diabetes Mellitus. Journal of the Japanese Association of Rural Medicine, 2020, 68, 687.	0.0	0
141	Abstract 10007: AMP Deaminase in Mitochondria-Associated ER Membranes Contributes to Reduction of the Threshold for Mitochondrial Permeability Transition in Type 2 Diabetic Hearts. Circulation, 2021, 144, .	1.6	0