Biana Godin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11849570/publications.pdf

Version: 2024-02-01

136950 223800 5,458 49 32 46 citations h-index g-index papers 55 55 55 8616 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Modeling of Nanotherapy Response as a Function of the Tumor Microenvironment: Focus on Liver Metastasis. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1011.	4.1	8
2	Design and in vitro characterization of multistage silicon-PLGA budesonide particles for inflammatory bowel disease. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 151, 61-72.	4.3	17
3	Targeted nanoparticles in pregnancy: a new frontier in perinatal therapeutics. American Journal of Obstetrics and Gynecology, 2017, 216, 204-205.	1.3	9
4	Thioaptamer targeted discoidal microparticles increase self immunity and reduce Mycobacterium tuberculosis burden in mice. Journal of Controlled Release, 2017, 266, 238-247.	9.9	16
5	Gemcitabine enhances the transport of nanovector-albumin-bound paclitaxel in gemcitabine-resistant pancreatic ductal adenocarcinoma. Cancer Letters, 2017, 403, 296-304.	7.2	20
6	Macrophage Polarization Contributes to the Anti-Tumoral Efficacy of Mesoporous Nanovectors Loaded with Albumin-Bound Paclitaxel. Frontiers in Immunology, 2017, 8, 693.	4.8	49
7	Uterus-targeted liposomes for preterm labor management: studies in pregnant mice. Scientific Reports, 2016, 6, 34710.	3.3	37
8	Nanocarrier-Based Anticancer Therapies with the Focus on Strategies for Targeting the Tumor Microenvironment. Fundamental Biomedical Technologies, 2016, , 67-122.	0.2	0
9	The Importance of Particle Geometry in Design of Therapeutic and Imaging Nanovectors. Advances in Delivery Science and Technology, 2016, , 157-200.	0.4	1
10	Enhanced performance of macrophage-encapsulated nanoparticle albumin-bound-paclitaxel in hypo-perfused cancer lesions. Nanoscale, 2016, 8, 12544-12552.	5.6	49
11	Redirecting Transport of Nanoparticle Albumin-Bound Paclitaxel to Macrophages Enhances Therapeutic Efficacy against Liver Metastases. Cancer Research, 2016, 76, 429-439.	0.9	54
12	Dermal and Transdermal Delivery. , 2016, , 696-707.		0
13	Cubical Shape Enhances the Interaction of Layerâ€byâ€Layer Polymeric Particles with Breast Cancer Cells. Advanced Healthcare Materials, 2015, 4, 2657-2666.	7.6	60
14	Liposomes: a nanoscale drug carrying systemÂto prevent indomethacin passage toÂthe fetus in a pregnant mouse model. American Journal of Obstetrics and Gynecology, 2015, 212, 508.e1-508.e7.	1.3	34
15	Dermal and Transdermal Delivery. , 2015, , 1-12.		2
16	Internalization of Red Blood Cell-Mimicking Hydrogel Capsules with pH-Triggered Shape Responses. ACS Nano, 2014, 8, 5725-5737.	14.6	90
17	Low pressure mediated enhancement of nanoparticle and macromolecule loading into porous silicon structures. Open Material Sciences, 2014, 1 , .	0.8	4
18	Design and In Vitro Evaluation of Layer by Layer siRNA Nanovectors Targeting Breast Tumor Initiating Cells. PLoS ONE, 2014, 9, e91986.	2.5	15

#	Article	lF	Citations
19	Nanotechnology toward Advancing Personalized Medicine. , 2014, , 1-57.		О
20	Bacteriophage associated silicon particles: design and characterization of a novel theranostic vector with improved payload carrying potential. Journal of Materials Chemistry B, 2013, 1, 5218.	5.8	20
21	Porous silicon nanocarriers for dual targeting tumor associated endothelial cells and macrophages in stroma of orthotopic human pancreatic cancers. Cancer Letters, 2013, 334, 319-327.	7.2	63
22	Silicon Micro―and Nanofabrication for Medicine. Advanced Healthcare Materials, 2013, 2, 632-666.	7.6	67
23	Drug Delivery: Discoidal Porous Silicon Particles: Fabrication and Biodistribution in Breast Cancer Bearing Mice (Adv. Funct. Mater. 20/2012). Advanced Functional Materials, 2012, 22, 4186-4186.	14.9	6
24	Cardiovascular Nanomedicine: A Posse Ad Esse. Methodist DeBakey Cardiovascular Journal, 2012, 8, 2-5.	1.0	7
25	Hydrogen-Bonded Multilayers of Silk Fibroin: From Coatings to Cell-Mimicking Shaped Microcontainers. ACS Macro Letters, 2012, 1, 384-387.	4.8	35
26	Biocompatibility assessment of Si-based nano- and micro-particles. Advanced Drug Delivery Reviews, 2012, 64, 1800-1819.	13.7	218
27	Injectable Multistage Nanovectors for Enhancing Imaging Contrast and Directed Therapy. Nanostructure Science and Technology, 2012, , 201-223.	0.1	1
28	Cardiovascular Nanomedicine: Challenges and Opportunities. , 2012, , 249-281.		3
29	Discoidal Porous Silicon Particles: Fabrication and Biodistribution in Breast Cancer Bearing Mice. Advanced Functional Materials, 2012, 22, 4225-4235.	14.9	170
30	Multistage Nanovectors: From Concept to Novel Imaging Contrast Agents and Therapeutics. Accounts of Chemical Research, 2011, 44, 979-989.	15.6	198
31	Multi-stage delivery nano-particle systems for therapeutic applications. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 317-329.	2.4	127
32	Near-Infrared Imaging Method for the In Vivo Assessment of the Biodistribution of Nanoporous Silicon Particles. Molecular Imaging, 2011, 10, 7290.2011.00011.	1.4	50
33	Size of the nanovectors determines the transplacental passage in pregnancy: study in rats. American Journal of Obstetrics and Gynecology, 2011, 204, 546.e5-546.e9.	1.3	41
34	Near-infrared imaging method for the in vivo assessment of the biodistribution of nanoporous silicon particles. Molecular Imaging, 2011, 10, 56-68.	1.4	32
35	Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation. Journal of Biomedical Materials Research - Part A, 2010, 94A, 1236-1243.	4.0	89
36	Cellular Association and Assembly of a Multistage Delivery System. Small, 2010, 6, 1329-1340.	10.0	89

#	Article	IF	CITATIONS
37	Logicâ€Embedded Vectors for Intracellular Partitioning, Endosomal Escape, and Exocytosis of Nanoparticles. Small, 2010, 6, 2691-2700.	10.0	100
38	Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast. Nature Nanotechnology, 2010, 5, 815-821.	31.5	379
39	An Integrated Approach for the Rational Design of Nanovectors for Biomedical Imaging and Therapy. Advances in Genetics, 2010, 69, 31-64.	1.8	48
40	Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends in Pharmacological Sciences, 2010, 31, 199-205.	8.7	217
41	Enabling individualized therapy through nanotechnology. Pharmacological Research, 2010, 62, 57-89.	7.1	188
42	Sustained Small Interfering RNA Delivery by Mesoporous Silicon Particles. Cancer Research, 2010, 70, 3687-3696.	0.9	313
43	Nanomedicine—Challenge and Perspectives. Angewandte Chemie - International Edition, 2009, 48, 872-897.	13.8	1,111
44	Mitotic trafficking of silicon microparticles. Nanoscale, 2009, 1, 250.	5.6	91
45	Multistage Mesoporous Silicon-based Nanocarriers: Biocompatibility with Immune Cells and Controlled Degradation in Physiological Fluids. , 2008, 25, 9-11.		12
46	Transdermal skin delivery: Predictions for humans from in vivo, ex vivo and animal modelsâ~†. Advanced Drug Delivery Reviews, 2007, 59, 1152-1161.	13.7	559
47	Erythromycin Ethosomal Systems: Physicochemical Characterization and Enhanced Antibacterial Activity. Current Drug Delivery, 2005, 2, 269-275.	1.6	84
48	Ethosomes: New Prospects in Transdermal Delivery. Critical Reviews in Therapeutic Drug Carrier Systems, 2003, 20, 63-102.	2.2	185
49	Enhanced delivery of drugs into and across the skin by ethosomal carriers. Drug Development Research, 2000, 50, 406-415.	2.9	150