Hao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1184932/publications.pdf

Version: 2024-02-01

		304743	414414
31	5,666	22	32
papers	citations	h-index	g-index
35	35	35	7832
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Silencing of STE20-type kinase STK25 in human aortic endothelial and smooth muscle cells is atheroprotective. Communications Biology, 2022, 5, 379.	4.4	4
2	Bayesian genome scale modelling identifies thermal determinants of yeast metabolism. Nature Communications, 2021, 12, 190.	12.8	25
3	Genome-scale insights into the metabolic versatility of Limosilactobacillus reuteri. BMC Biotechnology, 2021, 21, 46.	3.3	8
4	Genome-scale metabolic network reconstruction of model animals as a platform for translational research. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	48
5	Yeast metabolic innovations emerged via expanded metabolic network and gene positive selection. Molecular Systems Biology, 2021, 17, e10427.	7.2	17
6	Optimizing cultivation of Cordyceps militaris for fast growth and cordycepin overproduction using rational design of synthetic media. Computational and Structural Biotechnology Journal, 2020, 18, 1-8.	4.1	31
7	An atlas of human metabolism. Science Signaling, 2020, 13, .	3.6	223
8	The Swinholide Biosynthesis Gene Cluster from a Terrestrial Cyanobacterium, Nostoc sp. Strain UHCC 0450. Applied and Environmental Microbiology, 2018, 84, .	3.1	21
9	RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. PLoS Computational Biology, 2018, 14, e1006541.	3.2	228
10	Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotechnology, 2017, 35, 969-976.	17.5	356
11	Production of High Amounts of Hepatotoxin Nodularin and New Protease Inhibitors Pseudospumigins by the Brazilian Benthic Nostoc sp. CENA543. Frontiers in Microbiology, 2017, 8, 1963.	3.5	35
12	A Unique Tryptophan Câ€Prenyltransferase from the Kawaguchipeptin Biosynthetic Pathway. Angewandte Chemie - International Edition, 2016, 55, 3596-3599.	13.8	49
13	Antifungal activity improved by coproduction of cyclodextrins and anabaenolysins in Cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13669-13674.	7.1	27
14	Genomic insights into the distribution, genetic diversity and evolution of polyketide synthases and nonribosomal peptide synthetases. Current Opinion in Genetics and Development, 2015, 35, 79-85.	3.3	33
15	Recurrent Loss of Specific Introns during Angiosperm Evolution. PLoS Genetics, 2014, 10, e1004843.	3.5	26
16	Reply to Sasso et al.: Distribution and phylogeny of nonribosomal peptide and polyketide biosynthetic pathways in eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3947-E3947.	7.1	2
17	Hassallidins, antifungal glycolipopeptides, are widespread among cyanobacteria and are the end-product of a nonribosomal pathway. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1909-17.	7.1	102
18	Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9259-9264.	7.1	310

#	Article	IF	CITATIONS
19	Global Genomic Diversity of Oryza sativa Varieties Revealed by Comparative Physical Mapping. Genetics, 2014, 196, 937-949.	2.9	10
20	Genome-derived insights into the biology of the hepatotoxic bloom-forming cyanobacterium Anabaena sp. strain 90. BMC Genomics, 2012, 13, 613.	2.8	52
21	Anatoxin-a Synthetase Gene Cluster of the Cyanobacterium Anabaena sp. Strain 37 and Molecular Methods To Detect Potential Producers. Applied and Environmental Microbiology, 2011, 77, 7271-7278.	3.1	166
22	De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nature Biotechnology, 2011, 29, 521-527.	17.5	356
23	Genome Mining Demonstrates the Widespread Occurrence of Gene Clusters Encoding Bacteriocins in Cyanobacteria. PLoS ONE, 2011, 6, e22384.	2.5	78
24	Recurrent adenylation domain replacement in the microcystin synthetase gene cluster. BMC Evolutionary Biology, 2007, 7, 183.	3.2	97
25	An analysis of the proteomic profile for <i>Thermoanaerobacter tengcongensis</i> under optimal culture conditions. Proteomics, 2004, 4, 136-150.	2.2	39
26	Assessment of Immunoreactive Synthetic Peptides from the Structural Proteins of Severe Acute Respiratory Syndrome Coronavirus. Clinical Chemistry, 2003, 49, 1989-1996.	3.2	71
27	The C-Terminal Portion of the Nucleocapsid Protein Demonstrates SARS-CoV Antigenicity. Genomics, Proteomics and Bioinformatics, 2003, 1, 193-197.	6.9	11
28	The Epitope Study on the SARS-CoV Nucleocapsid Protein. Genomics, Proteomics and Bioinformatics, 2003, 1, 198-206.	6.9	27
29	A Strategy for Searching Antigenic Regions in the SARS-CoV Spike Protein. Genomics, Proteomics and Bioinformatics, 2003, 1, 207-215.	6.9	14
30	A Draft Sequence of the Rice Genome (<i>Oryza sativa</i> L. ssp. <i>indica</i>). Science, 2002, 296, 79-92.	12.6	3,146
31	A draft sequence of the rice (Oryza sativa ssp.indica) genome. Science Bulletin, 2001, 46, 1937-1942.	1.7	35