Jean-Marie Ruysschaert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11847581/publications.pdf Version: 2024-02-01

		26630	32842
210	12,156	56	100
papers	citations	h-index	g-index
212	212	212	11761
213	213	213	11761
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. BBA - Biomembranes, 1999, 1422, 105-185.	8.0	532
2	Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films. FEBS Journal, 1990, 193, 409-420.	0.2	479
3	Antiparallel β-sheet: a signature structure of the oligomeric amyloid β-peptide. Biochemical Journal, 2009, 421, 415-423.	3.7	445
4	Formation and Intracellular Trafficking of Lipoplexes and Polyplexes. Molecular Therapy, 2005, 11, 336-347.	8.2	421
5	Evaluation of the Information Content in Infrared Spectra for Protein Secondary Structure Determination. Biophysical Journal, 2006, 90, 2946-2957.	0.5	341
6	ATR-FTIR: A "rejuvenated―tool to investigate amyloid proteins. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2328-2338.	2.6	338
7	Determination of Soluble and Membrane Protein Structure by Fourier Transform Infrared Spectroscopy. Sub-Cellular Biochemistry, 1994, 23, 405-450.	2.4	324
8	Phosphatidylethanolamine Is a Key Regulator of Membrane Fluidity in Eukaryotic Cells. Journal of Biological Chemistry, 2016, 291, 3658-3667.	3.4	261
9	Determination of Soluble and Membrane Protein Structure by Fourier Transform Infrared Spectroscopy. Sub-Cellular Biochemistry, 1994, 23, 329-362.	2.4	260
10	Toxic prefibrillar α-synuclein amyloid oligomers adopt a distinctive antiparallel β-sheet structure. Biochemical Journal, 2012, 443, 719-726.	3.7	215
11	Saposin fold revealed by the NMR structure of NK-lysin. Nature Structural Biology, 1997, 4, 793-795.	9.7	214
12	What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion (Review). Molecular Membrane Biology, 1997, 14, 97-112.	2.0	200
13	Cationic liposomal lipids: From gene carriers to cell signaling. Progress in Lipid Research, 2008, 47, 340-347.	11.6	186
14	Cationic lipids activate intracellular signaling pathways. Advanced Drug Delivery Reviews, 2012, 64, 1749-1758.	13.7	172
15	Structural Characterization of the Hydrophobin SC3, as a Monomer and after Self-Assembly at Hydrophobic/Hydrophilic Interfaces. Biophysical Journal, 1998, 74, 2059-2068.	0.5	168
16	Structure and orientation of the surfactantâ€associated protein C in a lipid bilayer. FEBS Journal, 1992, 203, 201-209.	0.2	167
17	Structural analysis of a nanoparticle containing a lipid bilayer used for detergent-free extraction of membrane proteins. Nano Research, 2015, 8, 774-789.	10.4	161
18	The optimization of protein secondary structure determination with infrared and circular dichroism spectra. FEBS Journal, 2004, 271, 2937-2948.	0.2	155

#	Article	IF	CITATIONS
19	Adriamycin inactivates cytochrome c oxidase by exclusion of the enzyme from its cardiolipin essential environment. Biochemical and Biophysical Research Communications, 1982, 104, 314-320.	2.1	148
20	Amyloid fibrils are the molecular trigger of inflammation in Parkinson's disease. Biochemical Journal, 2015, 471, 323-333.	3.7	144
21	Membrane Helix Orientation from Linear Dichroism of Infrared Attenuated Total Reflection Spectra. Biophysical Journal, 1999, 76, 552-563.	0.5	141
22	Transformation of amyloid β(1–40) oligomers into fibrils is characterized by a major change in secondary structure. Cellular and Molecular Life Sciences, 2011, 68, 1429-1438.	5.4	129
23	Secondary and Tertiary Structure Changes of Reconstituted P-glycoprotein. Journal of Biological Chemistry, 1996, 271, 24617-24624.	3.4	128
24	Determination of Soluble and Membrane Protein Structure by Fourier Transform Infrared Spectroscopy. Sub-Cellular Biochemistry, 1994, 23, 363-403.	2.4	124
25	Structure and Topology of the Influenza Virus Fusion Peptide in Lipid Bilayers. Journal of Biological Chemistry, 1995, 270, 27606-27614.	3.4	122
26	Protein concentration is not an absolute prerequisite for the determination of secondary structure from circular dichroism spectra: a new scaling method. Analytical Biochemistry, 2003, 319, 114-121.	2.4	117
27	The Different Molar Absorptivities of the Secondary Structure Types in the Amide I Region: An Attenuated Total Reflection Infrared Study on Globular Proteins. Analytical Biochemistry, 1996, 242, 95-103.	2.4	109
28	Identification of the Paired Basic Convertases Implicated in HIV gp160 Processing Based on in Vitro Assays and Expression in CD4+ Cell Lines. Journal of Biological Chemistry, 1996, 271, 30442-30450.	3.4	109
29	Long-term In Vitro Treatment of Human Glioblastoma Cells with Temozolomide Increases Resistance In Vivo through Up-regulation of GLUT Transporter and Aldo-Keto Reductase Enzyme AKR1C Expression. Neoplasia, 2010, 12, 727-739.	5.3	104
30	Calcium Ions Promote Formation of Amyloid β-Peptide (1–40) Oligomers Causally Implicated in Neuronal Toxicity of Alzheimer's Disease. PLoS ONE, 2011, 6, e18250.	2.5	103
31	Orientation into the lipid bilayer of an asymmetric amphipathic helical peptide located at the N-terminus of viral fusion proteins. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1029, 267-273.	2.6	101
32	Orientation and structure of the NH2-terminal HIV-1 gp41 peptide in fused and aggregated liposomes. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1145, 124-133.	2.6	99
33	Secondary Structure and Membrane Interaction of PR-39, a Pro+Arg-rich Antibacterial Peptide. FEBS Journal, 1994, 224, 1019-1027.	0.2	97
34	Identification of a Novel Determinant for Membrane Association in Hepatitis C Virus Nonstructural Protein 4B. Journal of Virology, 2009, 83, 6257-6268.	3.4	91
35	Ligand-mediated Tertiary Structure Changes of Reconstituted P-glycoprotein. Journal of Biological Chemistry, 1999, 274, 17649-17654.	3.4	90
36	The Low Density Lipoprotein Receptor Active Conformation of Apolipoprotein E. Journal of Biological Chemistry, 1998, 273, 25825-25830.	3.4	89

#	Article	IF	CITATIONS
37	Pulmonary surfactantâ€associated polypeptide C in a mixed organic solvent transforms from a monomeric αâ€helical state into insoluble βâ€sheet aggregates. Protein Science, 1998, 7, 2533-2540.	7.6	85
38	The Acid Activation ofHelicobacter pyloriToxin VacA: Structural and Membrane Binding Studies. Biochemical and Biophysical Research Communications, 1998, 248, 334-340.	2.1	84
39	High ability of apolipoprotein E4 to stabilize amyloidâ $\widehat{\mathfrak{t}^2}$ peptide oligomers, the pathological entities responsible for Alzheimer's disease. FASEB Journal, 2011, 25, 1585-1595.	0.5	83
40	DiC14â€amidine cationic liposomes stimulate myeloid dendritic cells through Tollâ€like receptor 4. European Journal of Immunology, 2008, 38, 1351-1357.	2.9	82
41	Cationic lipid nanocarriers activate Toll-like receptor 2 and NLRP3 inflammasome pathways. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 775-782.	3.3	79
42	Tertiary stability of native and methionine-80 modified cytochrome c detected by proton-deuterium exchange using online Fourier transform infrared spectroscopy. Biochemistry, 1995, 34, 172-179.	2.5	75
43	β-Sheet Structured β-Amyloid(1-40) Perturbs Phosphatidylcholine Model Membranes. Journal of Molecular Biology, 2007, 368, 982-997.	4.2	75
44	Metal-induced conformational changes in ZneB suggest an active role of membrane fusion proteins in efflux resistance systems. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11038-11043.	7.1	74
45	Secondary structure and orientation of the amphipathic peptide GALA in lipid structures. An infrared-spectroscopic approach. FEBS Journal, 1991, 195, 421-429.	0.2	69
46	A lipid-mediated conformational switch modulates the thermosensing activity of DesK. Proceedings of the United States of America, 2014, 111, 3579-3584.	7.1	69
47	Protonation drives the conformational switch in the multidrug transporter LmrP. Nature Chemical Biology, 2014, 10, 149-155.	8.0	68
48	Interactions between Phosphatidylethanolamine Headgroup and LmrP, a Multidrug Transporter. Journal of Biological Chemistry, 2008, 283, 9369-9376.	3.4	66
49	Characterization of the Sequence of Interactions of the Fusion Domain of the Simian Immunodeficiency Virus with Membranes. Journal of Biological Chemistry, 1999, 274, 29951-29959.	3.4	65
50	The 21â€residue surfactant peptide (LysLeu ₄) ₄ Lys(KL ₄) is a transmembrane αâ€helix with a mixed nonpolar/polar surface. FEBS Letters, 1996, 384, 185-188.	2.8	64
51	Purification of IpaC, a protein involved in entry of Shigella flexneri into epithelial cells and characterization of its interaction with lipid membranes. FEBS Letters, 1997, 400, 149-154.	2.8	58
52	Amide-Proton Exchange of Water-Soluble Proteins of Different Structural Classes Studied at the Submolecular Level by Infrared Spectroscopy. Biochemistry, 1997, 36, 13603-13610.	2.5	58
53	Evaluation of the secondary structure of apo B-100 in low-density lipoprotein (LDL) by infrared spectroscopy. Lipids and Lipid Metabolism, 1989, 1006, 147-150.	2.6	57
54	Lipid membrane binding of NK-lysin. FEBS Letters, 1998, 425, 341-344.	2.8	57

#	Article	IF	CITATIONS
55	Sensor applications of attenuated total reflection infrared spectroscopy. Talanta, 2005, 65, 1132-1142.	5.5	57
56	Molecular modeling of the amphipathic helices of the plasma apolipoproteins. Proteins: Structure, Function and Bioinformatics, 1992, 13, 246-257.	2.6	56
57	Hydrogen/Deuterium Exchange Kinetics of Apolipophorin-III in Lipid-free and Phospholipid-bound States. Journal of Biological Chemistry, 1996, 271, 23089-23095.	3.4	56
58	Theoretical conformational analysis of phospholipids bilayers. Biochemical and Biophysical Research Communications, 1981, 103, 301-310.	2.1	55
59	Sequence and Structure of the Membrane-Associated Peptide of Glycophorin A. Biochemistry, 1994, 33, 6902-6910.	2.5	53
60	Alignment of the Apolipophorin-III α-Helices in Complex with Dimyristoylphosphatidylcholine Journal of Biological Chemistry, 1995, 270, 12542-12547.	3.4	52
61	Identification of human plasma proteins that bind to cationic lipid/DNA complex and analysis of their effects on transfection efficiency: implications for intravenous gene transfer. Molecular Therapy, 2003, 8, 264-273.	8.2	52
62	Secondary structure of the membrane-bound form of the pore-forming domain of colicin A. An attenuated total-reflection polarized Fourier-transform infrared spectroscopy study. FEBS Journal, 1991, 202, 1299-1305.	0.2	50
63	Biophysical and Structural Properties of DNA·diC14-amidine Complexes. Journal of Biological Chemistry, 2000, 275, 29533-29538.	3.4	50
64	Membrane Interactions of Mutated Forms of the Influenza Fusion Peptide. Biochemistry, 2001, 40, 8800-8807.	2.5	50
65	Infrared spectroscopy as a tool for discrimination between sensitive and multiresistant K562 cells. FEBS Journal, 2002, 269, 1968-1973.	0.2	50
66	Papaya glutamine cyclase, a plant enzyme highly resistant to proteolysis, adopts an all-beta conformation. FEBS Journal, 1998, 258, 214-222.	0.2	49
67	Hydrogenâ^'Deuterium Exchange of Streptavidin and Its Complex with Biotin Studied by 2D-Attenuated Total Reflection Fourier Transform Infrared Spectroscopy. Journal of the American Chemical Society, 1999, 121, 5115-5122.	13.7	48
68	Localization in diphtheria toxin fragment B of a region that induces pore formation in planar lipid bilayers at low pH. FEBS Letters, 1983, 160, 82-86.	2.8	46
69	Interaction with a lipid membrane: a key step in bacterial toxins virulence. International Journal of Biological Macromolecules, 1997, 21, 285-298.	7.5	46
70	Fourier Transform Infrared Spectroscopy Study of the Secondary Structure of the Gastric H+,K+-ATPase and of Its Membrane-associated Proteolytic Peptides. Journal of Biological Chemistry, 1997, 272, 262-270.	3.4	45
71	Monitoring Structural Stability of Trypsin Inhibitor at the Submolecular Level by Amideâ^'Proton Exchange Using Fourier Transform Infrared Spectroscopy:  A Test Case for More General Application. Biochemistry, 1997, 36, 13593-13602.	2.5	44
72	Structure and Orientation of Two Voltage-dependent Anion-selective Channel Isoforms. Journal of Biological Chemistry, 2000, 275, 40992-40999.	3.4	44

#	Article	IF	CITATIONS
73	Analysis of 1H/2H Exchange Kinetics Using Model Infrared Spectra. Applied Spectroscopy, 2004, 58, 68-82.	2.2	44
74	Secondary structure and orientation of a chemically synthesized mitochondrial signal sequence in phospholipid bilayers. Biochemical and Biophysical Research Communications, 1989, 158, 610-616.	2.1	43
75	Conformational Changes in Aerolysin during the Transition from the Water-Soluble Protoxin to the Membrane Channelâ€. Biochemistry, 1997, 36, 15224-15232.	2.5	43
76	Role of Intracellular Cationic Liposome–DNA Complex Dissociation in Transfection Mediated by Cationic Lipids. DNA and Cell Biology, 2002, 21, 91-97.	1.9	43
77	Structural and Functional Asymmetry of the Nucleotide-binding Domains of P-glycoprotein Investigated by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy. Journal of Biological Chemistry, 2002, 277, 5008-5016.	3.4	43
78	Rationally selected basis proteins: A new approach to selecting proteins for spectroscopic secondary structure analysis. Protein Science, 2003, 12, 2015-2031.	7.6	43
79	Activation of innate immunity by lysozyme fibrils is critically dependent on cross-β sheet structure. Cellular and Molecular Life Sciences, 2013, 70, 2999-3012.	5.4	43
80	Diphtheria toxin induces fusion of small unilamellar vesicles at low pH. Biochimica Et Biophysica Acta - Biomembranes, 1984, 775, 31-36.	2.6	42
81	Relevance of Protein Thin Films Prepared for Attenuated Total Reflection Fourier Transform Infrared Spectroscopy: Significance of the pH. Applied Spectroscopy, 1996, 50, 1519-1527.	2.2	42
82	Mode of insertion of praziquantel and derivatives into lipid membranes. Biochemical Pharmacology, 1988, 37, 1615-1623.	4.4	41
83	Common Properties of Fusion Peptides from Diverse Systems. Bioscience Reports, 2000, 20, 483-500.	2.4	41
84	Molecular Restructuring of Water and Lipids upon the Interaction of DNA with Lipid Monolayers. Journal of the American Chemical Society, 2010, 132, 8037-8047.	13.7	40
85	Human immunodeficiency virus type-1-specific immune responses induced by DNA vaccination are greatly enhanced by mannan-coated diC14-amidine. European Journal of Immunology, 1997, 27, 3121-3129.	2.9	39
86	Furin and proprotein convertase 7 (PC7)/lymphoma PC endogenously expressed in rat liver can be resolved into distinct post-Golgi compartments. Biochemical Journal, 1998, 336, 311-316.	3.7	39
87	Intracellular Visualization of BrdU-labeled Plasmid DNA/Cationic Liposome Complexes. Journal of Histochemistry and Cytochemistry, 1999, 47, 1159-1166.	2.5	39
88	Role of the N-terminal peptides of viral envelope proteins in membrane fusion. Advanced Drug Delivery Reviews, 1999, 38, 233-255.	13.7	39
89	Secondary and Tertiary Structure Changes of Reconstituted LmrA Induced by Nucleotide Binding or Hydrolysis. Journal of Biological Chemistry, 2000, 275, 10962-10967.	3.4	39
90	Structure and Dynamics of the Membrane-Embedded Domain of LmrA Investigated by Coupling Polarized ATR-FTIR Spectroscopy and1H/2H Exchangeâ€. Biochemistry, 2001, 40, 11876-11886.	2.5	38

#	Article	IF	CITATIONS
91	Role of the quinone structure in the mitochondrial damage induced by antitumor anthracyclines. FEBS Letters, 1983, 155, 267-272.	2.8	37
92	Glucocorticoids Alter the Lipid and Protein Composition of Membrane Rafts of a Murine T Cell Hybridoma. Journal of Immunology, 2003, 170, 2932-2939.	0.8	37
93	Interactions Involved in the Realignment of Membrane-associated Helices. Journal of Biological Chemistry, 2006, 281, 7708-7716.	3.4	37
94	Lipid Composition Regulates the Orientation of Transmembrane Helices in HorA, an ABC Multidrug Transporter. Journal of Biological Chemistry, 2010, 285, 14144-14151.	3.4	37
95	Topology of diphtheria toxin B fragment inserted in lipid vesicies. Molecular Microbiology, 1994, 11, 43-50.	2.5	36
96	Characterization of the interaction of IpaB and IpaD, proteins required for entry of Shigella flexneriinto epithelial cells, with a lipid membrane. FEBS Journal, 2000, 267, 5769-5776.	0.2	36
97	Lipid Mixing between Lipoplexes and Plasma Lipoproteins Is a Major Barrier for Intravenous Transfection Mediated by Cationic Lipids. Journal of Biological Chemistry, 2005, 280, 12255-12261.	3.4	36
98	ATR-FTIR Analysis of Amyloid Proteins. Methods in Molecular Biology, 2018, 1777, 69-81.	0.9	36
99	Structure and interaction of VacA of Helicobacter pylori with a lipid membrane. FEBS Journal, 2000, 267, 104-109.	0.2	34
100	Protein-induced Fusion Can Be Modulated by Target Membrane Lipids through a Structural Switch at the Level of the Fusion Peptide. Journal of Biological Chemistry, 2000, 275, 3936-3942.	3.4	34
101	Multidrug Resistance Protein MRP1 Reconstituted into Lipid Vesicles:  Secondary Structure and Nucleotide-Induced Tertiary Structure Changes. Biochemistry, 2000, 39, 13026-13033.	2.5	34
102	Membrane Molecule Reorientation in an Electric Field Recorded by Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy. Biophysical Journal, 2001, 80, 324-330.	0.5	34
103	Biophysical and Transfection Studies of the diC14-Amidine/DNA Complex. Biophysical Journal, 2002, 82, 3105-3117.	O.5	34
104	Orientation and mode of lipid-binding interaction of human apolipoprotein E C-terminal domain. Biochemical Journal, 2005, 387, 747-754.	3.7	34
105	Specific interaction between concanavalin a and glycolipids incorporated into planar bilayer membranes. Biochemical and Biophysical Research Communications, 1976, 72, 709-713.	2.1	33
106	In-vivo and in-vitro mitochondrial membrane damages induced in mice by adriamycin and derivatives. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1149, 79-85.	2.6	33
107	Fourier Transform Infrared Spectroscopy Study of the Secondary Structure of the Reconstituted Neurospora crassa Plasma Membrane H+-ATPase and of Its Membrane-associated Proteolytic Peptides. Journal of Biological Chemistry, 1995, 270, 17685-17696.	3.4	33
108	Structural Properties of the Putative Fusion Peptide of Fertilin, a Protein Active in Spermâ^'Egg Fusion, upon Interaction with the Lipid Bilayer. Biochemistry, 1998, 37, 17030-17039.	2.5	33

#	Article	IF	CITATIONS
109	Purification and Characterization of Two Voltage-Dependent Anion Channel Isoforms from Plant Seeds. Plant Physiology, 2000, 124, 1181-1190.	4.8	33
110	Identification of Specific Lipid-binding Sites in Integral Membrane Proteins. Journal of Biological Chemistry, 2010, 285, 10519-10526.	3.4	33
111	Membrane Fusion Induced by 11-mer Anionic and Cationic Peptides: A Structureâ^'Function Studyâ€. Biochemistry, 1998, 37, 2361-2371.	2.5	31
112	Saturation of acyl chains converts cardiolipin from an antagonist to an activator of Toll-like receptor-4. Cellular and Molecular Life Sciences, 2019, 76, 3667-3678.	5.4	31
113	Structure and Interaction of PA63 and EF (Edema Toxin) ofBacillus anthraciswith Lipid Membraneâ€. Biochemistry, 1997, 36, 14906-14913.	2.5	30
114	Free cationic liposomes inhibit the inflammatory response to cationic lipid–DNA complex injected intravenously and enhance its transfection efficiency. Molecular Therapy, 2003, 7, 81-88.	8.2	30
115	Lipid phase separation mediates binding of porcine pancreatic phospholipase A2 to its substrate. Biochemical and Biophysical Research Communications, 1981, 101, 1410-1418.	2.1	29
116	The complete amino acid sequence of diphtheria toxin fragment B. Correlation with its lipid-binding properties. BBA - Proteins and Proteomics, 1985, 827, 45-50.	2.1	29
117	Fusogenic activity of cationic lipids and lipid shape distribution. Cellular and Molecular Life Sciences, 2010, 67, 483-494.	5.4	29
118	Large supramolecular structures of 33-mer gliadin peptide activate toll-like receptors in macrophages. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1417-1427.	3.3	29
119	A CNBR peptide located in the middle region of diphtheria toxin fragment B induces conductance change in lipid bilayers. Biochemical and Biophysical Research Communications, 1981, 99, 358-363.	2.1	28
120	Secondary Structure of Anthrax Lethal Toxin Proteins and Their Interaction with Large Unilamellar Vesicles:à A Fourier-Transform Infrared Spectroscopy Approachâ€. Biochemistry, 1996, 35, 14939-14946.	2.5	28
121	Structural and Metal Binding Characterization of the C-Terminal Metallochaperone Domain of Membrane Fusion Protein SilB fromCupriavidus metalliduransCH34. Biochemistry, 2011, 50, 2194-2204.	2.5	28
122	Critical residues involved in Toll-like receptor 4 activation by cationic lipid nanocarriers are not located at the lipopolysaccharide-binding interface. Cellular and Molecular Life Sciences, 2015, 72, 3971-3982.	5.4	28
123	Characterization by Nano-Infrared Spectroscopy of Individual Aggregated Species of Amyloid Proteins. Molecules, 2020, 25, 2899.	3.8	28
124	Phosphorylation-induced Conformational Changes of Cystic Fibrosis Transmembrane Conductance Regulator Monitored by Attenuated Total Reflection-Fourier Transform IR Spectroscopy and Fluorescence Spectroscopy. Journal of Biological Chemistry, 2004, 279, 5528-5536.	3.4	27
125	Conformational changes in gastric H+/K+-ATPase monitored by difference Fourier-transform infrared spectroscopy and hydrogen/deuterium exchange. Biochemical Journal, 2004, 382, 121-129.	3.7	27
126	Structural Characterization of the Amyloid Precursor Protein Transmembrane Domain and Its γ-Cleavage Site. ACS Omega, 2017, 2, 6525-6534.	3.5	26

#	Article	IF	CITATIONS
127	Functional differentiation of amphiphilic helices of the apolipoproteins by hydrophobic moment analysis. BBA - Proteins and Proteomics, 1987, 911, 45-52.	2.1	25

128 Comparison of lipid vesicle fusion induced by the putative fusion peptide of fertilin (a protein active in) Tj ETQq0 0 $\frac{0.8}{2.5}$ BT /Overlock 10 T

129	Membrane Fusion Induced by a Short Fusogenic Peptide Is Assessed by Its Insertion and Orientation into Target Bilayersâ€. Biochemistry, 1999, 38, 9337-9347.	2.5	25
130	Monitoring of secondary and tertiary structure changes in the gastric H+/K+-ATPase by infrared spectroscopy. FEBS Journal, 2001, 268, 3644-3653.	0.2	25
131	Cationic lipids as one-component vaccine adjuvants: A promising alternative to alum. Journal of Controlled Release, 2018, 287, 67-77.	9.9	25
132	Structural and Functional Importance of the C-Terminal Part of the Pulmonary Surfactant Polypeptide SP-C. FEBS Journal, 1995, 229, 465-472.	0.2	25
133	A semi-empirical conformational analysis of the interaction of n-alkanols with dipalmitoylphosphatidylcholine. Biochimica Et Biophysica Acta - Biomembranes, 1985, 814, 227-236.	2.6	24
134	Phospholipid Species Act as Modulators in p97/p47-Mediated Fusion of Golgi Membranesâ€. Biochemistry, 2002, 41, 9813-9823.	2.5	24
135	Evaluation of the Ordering of Membranes in Multilayer Stacks Built on an ATR-FTIR Germanium Crystal with Atomic Force Microscopy: The Case of the H+,K+-ATPase-containing Gastric Tubulovesicle Membranes. Biophysical Journal, 2004, 87, 1307-1315.	0.5	24
136	Translocation of amino acyl residues from the membrane interface to the hydrophobic core: thermodynamic model and experimental analysis using ATR-FTIR spectroscopy. Molecular Membrane Biology, 2006, 23, 363-374.	2.0	24
137	Comparative processing of bovine leukemia virus envelope glycoprotein gp72 by subtilisin/kexin-like mammalian convertases. FEBS Letters, 1997, 406, 205-210.	2.8	23
138	Considering temozolomide as a novel potential treatment for esophageal cancer. Cancer, 2011, 117, 2004-2016.	4.1	23
139	Vaccination with the recombinant allergen ProDer p 1 complexed with the cationic lipid DiC14-amidine prevents allergic responses to house dust mite. Molecular Therapy, 2005, 11, 960-968.	8.2	22
140	Cationic lipids activate cellular cascades. Which receptors are involved?. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 425-430.	2.4	22
141	Cellular uptake, cytotoxicity, and transport kinetics of anthracyclines in human sensitive and multidrug-resistant K562 cells. Biochemical Pharmacology, 1996, 51, 1341-1348.	4.4	21
142	The cationic lipid, diC14 amidine, extends the adjuvant properties of aluminum salts through a TLR-4- and caspase-1-independent mechanism. Vaccine, 2012, 30, 414-424.	3.8	21
143	Topology of diphtheria toxin in lipid vesicle membranes: a proteolysis study. Molecular Microbiology, 1996, 21, 1283-1296.	2.5	20
144	pH dependent insertion of a diphtheria toxin B fragment peptide into the lipid membrane: A conformational analysis. Biochemical and Biophysical Research Communications, 1986, 136, 160-168.	2.1	19

#	Article	IF	CITATIONS
145	Enzymatic hydrolysis of reconstituted dimyristoylphosphatidylcholine-apo A-I complexes. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1151, 137-142.	2.6	18
146	Fourier Transform Infrared Spectroscopy Study of the Secondary and Tertiary Structure of the Reconstituted Na+/Ca2+ Exchanger 70-kDa Polypeptide. Journal of Biological Chemistry, 1999, 274, 15510-15518.	3.4	18
147	Occurrence of an HIV-1 gp160 endoproteolytic activity in low-density vesicles and evidence for a distinct density distribution from endogenously expressed furin and PC7/LPC convertases. FEBS Letters, 1999, 456, 97-102.	2.8	17
148	Liposomes composed of a double-chain cationic amphiphile (Vectamidine) induce their own encapsulation into human erythrocytes. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1421, 125-130.	2.6	17
149	Secondary structure changes of diphtheria toxin interacting with asolectin liposomes: an infrared spectroscopy study. Biochimie, 1989, 71, 153-158.	2.6	16
150	Aggregation and fusion of lipid vesicles induced by diphtheria toxin at low pH: Possible involvement of the P site and the NAD+ binding site. Bioscience Reports, 1985, 5, 243-250.	2.4	15
151	Lipophosphoglycan of Leishmania donovani inhibits lipid vesicle fusion induced by the N-terminal extremity of viral fusogenic Simian immunodeficiency virus protein. FEBS Journal, 1998, 258, 150-156.	0.2	15
152	Mode of organization of galactolipids: A conformational analysis. Biochemical and Biophysical Research Communications, 1983, 115, 666-672.	2.1	14
153	Structure and dynamics of lipid-associated states of apocytochrome c. FEBS Journal, 2000, 267, 1390-1396.	0.2	14
154	Semi-empirical conformational analysis of propranolol interacting with dipalmitoylphosphatidylcholine. Biochimica Et Biophysica Acta - Biomembranes, 1985, 815, 341-350.	2.6	13
155	Physico-chemical characterization of a double long-chain cationic amphiphile (Vectamidine) by microelectrophoresis. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1372, 339-346.	2.6	13
156	Structural characterization of diC14-amidine, a pH-sensitive cationic lipid used for transfection. Chemistry and Physics of Lipids, 2004, 131, 197-204.	3.2	13
157	Toll-like receptor 2 promiscuity is responsible for the immunostimulatory activity of nucleic acid nanocarriers. Journal of Controlled Release, 2017, 247, 182-193.	9.9	13
158	Synthetic model peptides for apolipoproteins. I. Design and properties of synthetic model peptides for the amphipathic helices of the plasma apolipoproteins. Lipids and Lipid Metabolism, 1993, 1170, 1-7.	2.6	12
159	Secondary structure of the intact H+,K+-ATPase and of its membrane-embedded region . An attenuated total reflection infrared spectroscopy, circular dichroism and Raman spectroscopy study. FEBS Journal, 1998, 252, 261-267.	0.2	12
160	Membrane topology of VacA cytotoxin fromH. pylori. FEBS Letters, 2000, 481, 96-100.	2.8	12
161	Conformational Changes of the 120-kDa Na+/Ca2+Exchanger Protein upon Ligand Binding:Â A Fourier Transform Infrared Spectroscopy Studyâ€. Biochemistry, 2001, 40, 3324-3332.	2.5	12
162	A new experimental approach to detect long-range conformational changes transmitted between the membrane and cytosolic domains of LmrA, a bacterial multidrug transporter. FEBS Letters, 2002, 530, 197-203.	2.8	12

#	Article	IF	CITATIONS
163	Multidrug resistance protein 1 is not associated to detergent-resistant membranes. Biochemical and Biophysical Research Communications, 2007, 355, 1025-1030.	2.1	12
164	Temperature-Dependence of Cationic Lipid Bilayer Intermixing: Possible Role of Interdigitation. Langmuir, 2012, 28, 4640-4647.	3.5	12
165	Effect of structure in ionised albumin based nanoparticle: Characterisation, Emodin interaction, and in vitro cytotoxicity. Materials Science and Engineering C, 2019, 103, 109813.	7.3	12
166	Mode of organization of lipid aggregates: A conformational analysis. Bioscience Reports, 1984, 4, 259-267.	2.4	11
167	Mode of insertion of chlorophyll a in a lipid layer. A conformational approach. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 764, 295-300.	1.0	11
168	Structure of the apolipoprotein A-IV / lipid discoidal complexes: an attenuated total reflection polarized Fourier transform infrared spectroscopy study. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1149, 267-277.	2.6	11
169	Characterization of diphtheria toxin's catalytic domain interaction with lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1661, 166-177.	2.6	11
170	Cationic lipids involved in gene transfer mobilize intracellular calcium. Molecular Membrane Biology, 2007, 24, 225-232.	2.0	11
171	Characterization of the Cationic DiC14-amidine Bilayer by Mixed DMPC/DiC14-amidine Molecular Dynamics Simulations Shows an Interdigitated Nonlamellar Bilayer Phase. Langmuir, 2009, 25, 5230-5238.	3.5	11
172	Structure and Topology of Diphtheria Toxin R Domain in Lipid Membranes. Biochemistry, 1999, 38, 660-666.	2.5	10
173	Difference between the E1 and E2 conformations of gastric H+/K+-ATPase in a multilamellar lipid film system. FEBS Journal, 2001, 268, 2873-2880.	0.2	10
174	Structure, Orientation, and Conformational Changes in Transmembrane Domains of Multidrug Transporters. Accounts of Chemical Research, 2005, 38, 117-126.	15.6	10
175	Free diC14-amidine liposomes inhibit the TNF-α secretion induced by CpG sequences and lipopolysaccharides: role of lipoproteins. Molecular Membrane Biology, 2006, 23, 227-234.	2.0	10
176	Structural remodeling during amyloidogenesis of physiological Nα-acetylated α-synuclein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 501-510.	2.3	10
177	Use of a photoactivatable lipid to probe the topology of PA63 of Bacillus anthracis in lipid membranes. FEBS Journal, 1998, 256, 179-183.	0.2	9
178	Replacement of the positively charged Walker A lysine residue with a hydrophobic leucine residue and conformational alterations caused by this mutation in MRP1 impair ATP binding and hydrolysis. Biochemical Journal, 2006, 397, 121-130.	3.7	9
179	Cationic lipid/DNA complexes induce TNF-α secretion in splenic macrophages. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 817-823.	4.3	9
180	Stalk-free membrane fusion of cationic lipids via an interdigitated phase. Soft Matter, 2012, 8, 7243.	2.7	9

#	Article	IF	CITATIONS
181	Structural difference in the H+,K+-ATPase between the E1 and E2 conformations . An attenuated total reflection infrared spectroscopy, UV circular dichroism and Raman spectroscopy study. FEBS Journal, 1999, 262, 176-183.	0.2	8
182	Mistargeted MRPΔF728 mutant is rescued by intracellular GSH. FEBS Letters, 2004, 578, 145-151.	2.8	8
183	DNA alters the bilayer structure of cationic lipid diC14-amidine: A spin label study. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1304-1309.	2.6	8
184	Oligonucleotide Adsorption Affects Phase Transition but Not Interdigitation of diC14-Amidine Bilayers. Langmuir, 2013, 29, 11102-11108.	3.5	8
185	The synthetic cationic lipid <scp>diC14</scp> activates a sector of the <scp>A</scp> rabidopsis defence network requiring endogenous signalling components. Molecular Plant Pathology, 2015, 16, 963-972.	4.2	8
186	Sequence of ionophore conformational changes induced by a simulated membrane/water interface. Bioscience Reports, 1984, 4, 651-658.	2.4	7
187	Vesicle formation by double long-chain amidines. Journal of the Chemical Society Chemical Communications, 1986, , 1060.	2.0	7
188	Conformational analysis of lipoxin A, lipoxin B and their trans-isomers. Lipids and Lipid Metabolism, 1988, 960, 245-252.	2.6	7
189	Charged residues are involved in membrane fusion mediated by a hydrophilic peptide located in vesicular stomatitis virus G protein. Molecular Membrane Biology, 2006, 23, 396-406.	2.0	7
190	Structural characterization of novel cationic diC16-amidine bilayers: Evidence for partial interdigitation. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 127-133.	2.6	7
191	Hydrolysis of phosphatidylcholine liposomes by lysosomal phospholipase A is maximal at the phase transition temperature of the lipid substrate. Bioscience Reports, 1985, 5, 477-482.	2.4	6
192	Structural and Functional Importance of the C-Terminal Part of the Pulmonary Surfactant Polypeptide SP-C. FEBS Journal, 1995, 229, 465-472.	0.2	6
193	Reconstitution of the Neurospora crassa plasma membrane H+-adenosine triphosphatase. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1236, 95-104.	2.6	6
194	Relationship of membrane sidedness to the effects of the lipophosphoglycan of Leishmania donovani on the fusion of influenza virus. FEBS Journal, 1999, 262, 890-899.	0.2	6
195	Stacks of close to 100 phospholipid bilayers fully accessible to proteins. Analytica Chimica Acta, 2001, 435, 215-226.	5.4	6
196	Calorimetry of Cationic Liposome–DNA Complex and Intracellular Visualization of the Complexes. Methods in Enzymology, 2003, 373, 312-332.	1.0	6
197	DOTAP, a lipidic transfection reagent, triggers Arabidopsis plant defense responses. Planta, 2019, 249, 469-480.	3.2	6
198	Secondary structure of the membrane-bound domains of H+,K+-ATPase and Ca2+-ATPase, a comparison by FTIR after proteolysis treatment of the native membranes. FEBS Letters, 1998, 437, 187-192.	2.8	5

#	Article	IF	CITATIONS
199	BACTERIAL MULTIDRUG RESISTANCE MEDIATED BY ABC TRANSPORTERS. , 2003, , 243-262.		5
200	Structural modifications in the membrane-bound regions of the gastric H+/K+-ATPase upon ligand binding. FEBS Journal, 2001, 268, 5135-5141.	0.2	4
201	Expression, purification, and structural prediction of the Ets transcription factor ERM. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 1192-1201.	2.4	4
202	ATR–FTIR, a new tool to analyze the oligomeric content of Aβ samples in the presence of apolipoprotein E isoforms. Spectroscopy, 2010, 24, 245-249.	0.8	4
203	Insight into the Factors Influencing the Backbone Dynamics of Three Homologous Proteins, Dendrotoxins I and K, and BPTI:Â FTIR and Time-Resolved Fluorescence Investigations. Biochemistry, 2002, 41, 15267-15276.	2.5	2
204	Evidence that thermodynamic stability of papaya glutamine cyclase is only marginal. Biopolymers, 2002, 65, 325-335.	2.4	2
205	Contribution of infrared spectroscopy to the understanding of the structure of the Neurospora crassa plasma membrane H+-ATPase. , 1994, , 229-236.		1
206	Biophysical and transfection properties of DNA-DiC14-amidine complexes. Cellular and Molecular Biology Letters, 2002, 7, 249-50.	7.0	1
207	Structure, Orientation, and Conformational Changes in Transmembrane Domains of Multidrug Transporters. ChemInform, 2005, 36, no.	0.0	0
208	Conformational Changes of the 120â€kDa Na ⁺ /Ca ²⁺ Exchanger Protein upon Ligand Binding. Annals of the New York Academy of Sciences, 2002, 976, 97-99.	3.8	0
209	Lentil Seed Aquaporins. , 2000, , 297-305.		0
210	Mode of Organization of Galactolipids: a Conformational Analysis. , 1984, , 143-146.		0