Stanko Hocevar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1184370/publications.pdf

Version: 2024-02-01

257450 345221 2,918 39 24 36 h-index citations g-index papers 39 39 39 2632 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Insight on Single Cell Proton Exchange Membrane Fuel Cell Performance of Pt-Cu/C Cathode. Catalysts, 2019, 9, 544.	3.5	14
2	3D LTCC structure for a large-volume cavity-type chemical microreactor. Microelectronics International, 2015, 32, 133-137.	0.6	7
3	Modeling of methanol decomposition on Pt/CeO2/ZrO2 catalyst in a packed bed microreactor. Journal of Power Sources, 2014, 256, 80-87.	7.8	13
4	Effect of ordering of PtCu ₃ nanoparticle structure on the activity and stability for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2014, 16, 13610-13615.	2.8	115
5	A miniature fuel reformer system for portable power sources. Journal of Power Sources, 2014, 271, 392-400.	7.8	22
6	Time Evolution of the Stability and Oxygen Reduction Reaction Activity of PtCu/C Nanoparticles. ChemCatChem, 2013, 5, 2627-2635.	3.7	28
7	Severe accelerated degradation of PEMFC platinum catalyst: A thin film IL-SEM study. Electrochemistry Communications, 2013, 30, 75-78.	4.7	60
8	New Pt-skin electrocatalysts for oxygen reduction and methanol oxidation reactions. Electrochemistry Communications, 2012, 23, 125-128.	4.7	40
9	Identical Location Scanning Electron Microscopy: A Case Study of Electrochemical Degradation of PtNi Nanoparticles Using a New Nondestructive Method. Journal of Physical Chemistry C, 2012, 116, 21326-21333.	3.1	59
10	Si based methanol catalytic micro combustor for integrated steam reformer applications. Sensors and Actuators A: Physical, 2012, 180, 127-136.	4.1	8
11	Enhanced Oxygen Reduction and Methanol Oxidation Reaction Activities of Partially Ordered PtCu Nanoparticles. Energy Procedia, 2012, 29, 208-215.	1.8	25
12	Correlation between national development indicators and the implementation of a hydrogen economy in Slovenia. International Journal of Hydrogen Energy, 2012, 37, 5468-5480.	7.1	10
13	The LTCC combustor for ceramic micro-reactor for steam reforming. , 2011, , .		3
14	Design and Fabrication of a Complex LTCC-Based Reactor for the Production of Hydrogen for Portable PEM Fuel Cells. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2011, 2011, 000023-000028.	0.2	1
15	New all-atom force field for molecular dynamics simulation of an AlPO4-34 molecular sieve. Journal of Computational Chemistry, 2008, 29, 122-129.	3.3	11
16	Hydrogen Production. Green Energy and Technology, 2008, , 15-79.	0.6	1
17	Nanostructured CuxCe1â^'xO2â^'y mixed oxide catalysts: Characterization and WGS activity tests. Journal of Colloid and Interface Science, 2007, 307, 145-157.	9.4	36
18	Kinetics of the water–gas shift reaction over nanostructured copper–ceria catalysts. Applied Catalysis B: Environmental, 2006, 63, 194-200.	20.2	69

#	Article	IF	Citations
19	Catalysis and Chemical Reaction Engineering. , 2006, , 195-228.		1
20	Hydrogen Production and Cleaning from Renewable Feedstock., 2006,, 157-197.		0
21	TPR, TPO, and TPD examinations of Cu0.15Ce0.85O2â^'y mixed oxides prepared by co-precipitation, by the solâ€"gel peroxide route, and by citric acid-assisted synthesis. Journal of Colloid and Interface Science, 2005, 285, 218-231.	9.4	107
22	Silicotungstic acid/organically modified silane proton-conducting membranes. Journal of Solid State Electrochemistry, 2005, 9, 106-113.	2.5	25
23	CO Oxidation Kinetics over a Nanostructured Cu _{0.1} Ce _{0.9} O _{2-y} Catalyst: A CO/O ₂ Concentration Cycling Study. Topics in Catalysis, 2004, 30/31, 445-449.	2.8	14
24	Transient kinetic model of CO oxidation over aÂnanostructured Cu0.1Ce0.9O2â^'y catalyst. Journal of Catalysis, 2004, 222, 87-99.	6.2	119
25	Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2â^'y catalyst. Journal of Catalysis, 2003, 213, 135-150.	6.2	295
26	A comparative study of Pt γ-Al2O3, Au α-Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen. Catalysis Today, 2002, 75, 157-167.	4.4	532
27	Computational fluid dynamics study of phosphotungstic acid electrolyte-based fuel cell (PWAFC). Journal of Power Sources, 2001, 96, 303-320.	7.8	10
28	CuO–CeO2 mixed oxide catalysts for the selective oxidation of carbon monoxide in excess hydrogen. Catalysis Letters, 2001, 73, 33-40.	2.6	256
29	Membranes based on phosphotungstic acid and polybenzimidazole for fuel cell application. Journal of Power Sources, 2000, 90, 231-235.	7.8	196
30	CWO of phenol on two differently prepared CuO–CeO2 catalysts. Applied Catalysis B: Environmental, 2000, 28, 113-125.	20.2	193
31	Synthesis and characterization of proton-conducting materials containing dodecatungstophosphoric and dodecatungstosilic acid supported on silica. Journal of Power Sources, 1999, 79, 250-255.	7.8	132
32	Wet Oxidation of Phenol on Ce1â^'xCuxO2â^'Î'Catalyst. Journal of Catalysis, 1999, 184, 39-48.	6.2	100
33	Fuel cells with H3PW12O40 a 29H2O as solid electrolyte. International Journal of Hydrogen Energy, 1997, 22, 809-814.	7.1	44
34	High performance fuel cell based on phosphotungstic acid as proton conducting electrolyte. Electrochimica Acta, 1996, 41, 397-403.	5.2	96
35	On the possibility of incorporating Mn(II) and Cr(III) in SAPO-34 in the presence of isopropylamine as a template. Zeolites, 1993, 13, 384-387.	0.5	67
36	Acidity and Catalytic Activity of MeAPSO-44 (Me = Co, Mn, Cr, Zn, Mg), SAPO-44, AIPO4-5, and AIPO4-14 Molecular Sieves in Methanol Dehydration. Journal of Catalysis, 1993, 139, 351-361.	6.2	53

STANKO HOCEVAR

#	Article	IF	CITATIONS
37	Intracrystalline self-diffusion of H2O and CH4 in ZSM-5 zeolites. Zeolites, 1986, 6, 213-216.	0.5	68
38	Laws observed in the synthesis of zeolites having the structure of zsm-5 and varying chemical composition. Zeolites, 1983, 3, 311-320.	0.5	81
39	lon exchange of UO22+ in the Naî—,Y, FAU synthetic zeolite at high temperature. Journal of Inorganic and Nuclear Chemistry, 1979, 41, 91-94.	0.5	7