
Judy England

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/118416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Abiotic predictors of fine sediment accumulation in lowland rivers. International Journal of Sediment Research, 2022, 37, 128-137.	3.5	16
2	Disentangling responses to natural stressor and human impact gradients in river ecosystems across Europe. Journal of Applied Ecology, 2022, 59, 537-548.	4.0	11
3	Evaluating the performance of taxonomic and trait-based biomonitoring approaches for fine sediment in the UK. Ecological Indicators, 2022, 134, 108502.	6.3	6
4	The vulnerability of British aquatic insects to climate change. Knowledge and Management of Aquatic Ecosystems, 2022, , 3.	1.1	2
5	Invasion impacts and dynamics of a Europeanâ€wide introduced species. Global Change Biology, 2022, 28, 4620-4632.	9.5	27
6	The Plant Flow Index: A new method to assess the hydroecological condition of temporary rivers and streams. Ecological Indicators, 2021, 120, 106964.	6.3	1
7	Invasive species influence macroinvertebrate biomonitoring tools and functional diversity in British rivers. Journal of Applied Ecology, 2021, 58, 135-147.	4.0	18
8	Aquatic and terrestrial invertebrate community responses to drying in chalk streams. Water and Environment Journal, 2021, 35, 229-241.	2.2	13
9	Reconstructing Spatiotemporal Dynamics in Hydrological State Along Intermittent Rivers. Water (Switzerland), 2021, 13, 493.	2.7	4
10	A river classification scheme to assess macroinvertebrate sensitivity to water abstraction pressures. Water and Environment Journal, 2021, 35, 1226-1238.	2.2	5
11	Invertebrate Responses to Restoration across Benthic and Hyporheic Stream Compartments. Water (Switzerland), 2021, 13, 996.	2.7	9
12	Drought effects on invertebrate metapopulation dynamics and quasiâ€extinction risk in an intermittent river network. Global Change Biology, 2021, 27, 4024-4039.	9.5	22
13	Multiple coâ€occurrent alien invaders constrain aquatic biodiversity in rivers. Ecological Applications, 2021, 31, e02385.	3.8	17
14	Evidence of Taxonomic and Functional Recovery of Macroinvertebrate Communities Following River Restoration. Water (Switzerland), 2021, 13, 2239.	2.7	2
15	Best Practices for Monitoring and Assessing the Ecological Response to River Restoration. Water (Switzerland), 2021, 13, 3352.	2.7	9
16	Defining Recovery Potential in River Restoration: A Biological Data-Driven Approach. Water (Switzerland), 2021, 13, 3339.	2.7	1
17	Potential physical effects of suspended fine sediment on lotic macroinvertebrates. Hydrobiologia, 2020, 847, 697-711.	2.0	17
18	Assessing river condition: A multiscale approach designed for operational application in the context of biodiversity net gain. River Research and Applications, 2020, 36, 1559-1578.	1.7	25

JUDY ENGLAND

#	Article	IF	CITATIONS
19	Local and regional drivers influence how aquatic community diversity, resistance and resilience vary in response to drying. Oikos, 2020, 129, 1877-1890.	2.7	30
20	Traitâ€based ecology at large scales: Assessing functional trait correlations, phylogenetic constraints and spatial variability using open data. Global Change Biology, 2020, 26, 7255-7267.	9.5	28
21	Ecosystem services of temporary streams differ between wet and dry phases in regions with contrasting climates and economies. People and Nature, 2020, 2, 660-677.	3.7	27
22	Seeking river restoration appraisal best practice: supporting wider national and international environmental goals. Water and Environment Journal, 2020, 34, 1003-1011.	2.2	6
23	A revised classification of temperate lowland groundwaterâ€fed headwater streams based on their flora. Water and Environment Journal, 2020, 34, 573-585.	2.2	5
24	An invertebrate-based index to characterize ecological responses to flow intermittence in rivers. Fundamental and Applied Limnology, 2019, 193, 93-117.	0.7	19
25	Burrowing Invasive Species: An Unquantified Erosion Risk at the Aquaticâ€Terrestrial Interface. Reviews of Geophysics, 2019, 57, 1018-1036.	23.0	28
26	The contribution of citizen science volunteers to river monitoring and management: International and national perspectives and the example of the MoRPh survey. River Research and Applications, 2019, 35, 1359.	1.7	13
27	Biological indices to characterize community responses to drying in streams with contrasting flow permanence regimes. Ecological Indicators, 2019, 107, 105620.	6.3	15
28	Visualising and quantifying the variability of hydrological state in intermittent rivers. Fundamental and Applied Limnology, 2019, 193, 21-38.	0.7	23
29	Structural and functional responses of macroinvertebrate assemblages to longâ€ŧerm flow variability at perennial and nonperennial sites. Ecohydrology, 2019, 12, e2112.	2.4	9
30	The current state of the use of large wood in river restoration and management. Water and Environment Journal, 2019, 33, 366-377.	2.2	59
31	Developing a standard approach for assessing the hydromorphology of lakes in Europe. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 655-669.	2.0	7
32	Restoration of a chalk stream using wood: assessment of habitat improvements using the Modular River Survey. Water and Environment Journal, 2019, 33, 378-389.	2.2	5
33	Physical and biological controls on fine sediment transport and storage in rivers. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1331.	6.5	49
34	Trees and wood: working with natural river processes. Water and Environment Journal, 2019, 33, 342-352.	2.2	17
35	A comparison of biotic groups as dry-phase indicators of ecological quality in intermittent rivers and ephemeral streams. Ecological Indicators, 2019, 97, 165-174.	6.3	35
36	Does river restoration work? Taxonomic and functional trajectories at two restoration schemes. Science of the Total Environment, 2018, 618, 961-970.	8.0	45

JUDY ENGLAND

#	Article	IF	CITATIONS
37	Time-series analysis of a native and a non-native amphipod shrimp in two English rivers. Biolnvasions Records, 2018, 7, 101-110.	1.1	9
38	Invasive crayfish impacts on native fish diet and growth vary with fish life stage. Aquatic Sciences, 2017, 79, 113-125.	1.5	15
39	Temporary streams in temperate zones: recognizing, monitoring and restoring transitional aquaticâ€ŧerrestrial ecosystems. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1223.	6.5	74
40	MoRPh: a citizen science tool for monitoring and appraising physical habitat changes in rivers. Water and Environment Journal, 2017, 31, 418-424.	2.2	24
41	An index to track the ecological effects of drought development and recovery on riverine invertebrate communities. Ecological Indicators, 2017, 82, 344-356.	6.3	48
42	An approach to setting ecological flow thresholds for southern English chalk streams. Water and Environment Journal, 2017, 31, 528-536.	2.2	13
43	Application of the Proportion of Sedimentâ€sensitive Invertebrates (PSI) biomonitoring index. River Research and Applications, 2017, 33, 1596-1605.	1.7	14
44	The fine sediment conundrum; quantifying, mitigating and managing the issues. River Research and Applications, 2017, 33, 1509-1514.	1.7	11
45	Long-reach Biotope Mapping: Deriving Low Flow Hydraulic Habitat from Aerial Imagery. River Research and Applications, 2016, 32, 1597-1608.	1.7	10
46	River bank burrowing by invasive crayfish: Spatial distribution, biophysical controls and biogeomorphic significance. Science of the Total Environment, 2016, 569-570, 1190-1200.	8.0	33
47	Incorporating catchment to reach scale processes into hydromorphological assessment in the UK. Water and Environment Journal, 2016, 30, 22-30.	2.2	13
48	Mapping habitat indices across river networks using spatial statistical modelling of River Habitat Survey data. Ecological Indicators, 2016, 66, 20-29.	6.3	22
49	Timeâ€series analysis of native and nonâ€native crayfish dynamics in the Thames River Basin (southâ€eastern) Tj	ETQq1 1 2.0	. 0.784314 rg
50	Niche differentiation among invasive crayfish and their impacts on ecosystem structure and functioning. Freshwater Biology, 2014, 59, 1123-1135.	2.4	101
51	THE ASSESSMENT OF FINE SEDIMENT ACCUMULATION IN RIVERS USING MACROâ€INVERTEBRATE COMMUNITY RESPONSE. River Research and Applications, 2013, 29, 17-55.	1.7	125
52	Environmental biology of an invasive population of signal crayfish in the River Stort catchment (southeastern England). Limnologica, 2013, 43, 177-184.	1.5	15
53	Monitoring, river restoration and the Water Framework Directive. Water and Environment Journal, 2008, 22, 227-234.	2.2	38
54	The virile crayfish, Orconectes virilis (Hagen, 1870) (Crustacea: Decapoda: Cambaridae), identified in the UK. Aquatic Invasions, 2008, 3, 102-104.	1.6	31

JUDY ENGLAND

#	Article	IF	CITATIONS
55	Science and Management of Intermittent Rivers and Ephemeral Streams (SMIRES). Research Ideas and Outcomes, 0, 3, e21774.	1.0	33
56	A standardized multiâ€method survey to enhance characterization of riparian invertebrate communities. Water and Environment Journal, 0, , .	2.2	1
57	Back to the future: Exploring riverine macroinvertebrate communities' invasibility. River Research and Applications, 0, , .	1.7	2