Jelena Mann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11836235/publications.pdf

Version: 2024-02-01

		101543	1	118850	
62	5,575	36		62	
papers	citations	h-index		g-index	
68	68	68		8913	
00	00	00		0913	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Interdependent Transcription of a Natural Sense/Antisense Transcripts Pair (SLC34A1/PFN3). Non-coding RNA, 2022, 8, 19.	2.6	1
2	Epigenetic mechanisms and metabolic reprogramming in fibrogenesis: dual targeting of G9a and DNMT1 for the inhibition of liver fibrosis. Gut, 2021, 70, gutjnl-2019-320205.	12.1	36
3	Integrated Multiomics Reveals Glucose Use Reprogramming and Identifies a Novel Hexokinase in Alcoholic Hepatitis. Gastroenterology, 2021, 160, 1725-1740.e2.	1.3	35
4	Serum transferrin as a biomarker of hepatocyte nuclear factor 4 alpha activity and hepatocyte function in liver diseases. BMC Medicine, 2021, 19, 39.	5.5	8
5	A Mammalian Target of Rapamycinâ€Perilipin 3 (mTORC1â€Plin3) Pathway is essential to Activate Lipophagy and Protects Against Hepatosteatosis. Hepatology, 2021, 74, 3441-3459.	7. 3	20
6	Ammonia Scavenging Prevents Progression of Fibrosis in Experimental Nonalcoholic Fatty Liver Disease. Hepatology, 2020, 71, 874-892.	7.3	62
7	c-Rel orchestrates energy-dependent epithelial and macrophage reprogramming in fibrosis. Nature Metabolism, 2020, 2, 1350-1367.	11.9	16
8	cRel expression regulates distinct transcriptional and functional profiles driving fibroblast matrix production in systemic sclerosis. Rheumatology, 2020, 59, 3939-3951.	1.9	5
9	Therapeutic Strategies Toward Lactate Dehydrogenase Within the Tumor Microenvironment of Pancreatic Cancer. Pancreas, 2020, 49, 1364-1371.	1.1	7
10	RNA sequencing reveals changes in the microRNAome of transdifferentiating hepatic stellate cells that are conserved between human and rat. Scientific Reports, 2020, 10, 21708.	3.3	8
11	Defective HNF4alpha-dependent gene expression as a driver of hepatocellular failure in alcoholic hepatitis. Nature Communications, 2019, 10, 3126.	12.8	124
12	Fibrogenic Activity of MECP2 Is Regulated by Phosphorylation in Hepatic Stellate Cells. Gastroenterology, 2019, 157, 1398-1412.e9.	1.3	27
13	A Bioreactor Technology for Modeling Fibrosis in Human and Rodent Precision ut Liver Slices. Hepatology, 2019, 70, 1377-1391.	7.3	66
14	Lengthâ€independent telomere damage drives postâ€mitotic cardiomyocyte senescence. EMBO Journal, 2019, 38, .	7.8	307
15	Rapamycin improves healthspan but not inflammaging in <i>nflºb1</i> ^{â^'/â^'} mice. Aging Cell, 2019, 18, e12882.	6.7	59
16	Non-parenchymal TREM-2 protects the liver from immune-mediated hepatocellular damage. Gut, 2019, 68, 533-546.	12.1	96
17	Plasma cell-free DNA methylation: a liquid biomarker of hepatic fibrosis. Gut, 2018, 67, 1907-1908.	12.1	21
18	HDAC1 interacts with the p50 NF-κB subunit via its nuclear localization sequence to constrain inflammatory gene expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 962-970.	1.9	14

#	Article	IF	CITATIONS
19	Liquid biopsy for liver diseases. Gut, 2018, 67, 2204-2212.	12.1	79
20	A Proof-of-Concept for Epigenetic Therapy of Tissue Fibrosis: Inhibition of Liver Fibrosis Progression by 3-Deazaneplanocin A. Molecular Therapy, 2017, 25, 218-231.	8.2	65
21	Plasma DNA methylation: a potential biomarker for stratification of liver fibrosis in non-alcoholic fatty liver disease. Gut, 2017, 66, 1321-1328.	12.1	172
22	Epigenetics and Liver Fibrosis. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 125-134.	4. 5	88
23	Variant Histone H2afv reprograms DNA methylation during early zebrafish development. Epigenetics, 2017, 12, 811-824.	2.7	19
24	Dynamic phosphorylation of RelA on Ser42 and Ser45 in response to TNFÎ \pm stimulation regulates DNA binding and transcription. Open Biology, 2016, 6, 160055.	3.6	19
25	DNA methylation profiling identifies novel markers of progression in hepatitis B-related chronic liver disease. Clinical Epigenetics, 2016, 8, 48.	4.1	20
26	The role of exosomes in the pathogenesis of pancreatic ductal adenocarcinoma. International Journal of Biochemistry and Cell Biology, 2016, 75, 131-139.	2.8	15
27	Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape. Journal of Hepatology, 2016, 64, 661-673.	3.7	112
28	Gainâ€ofâ€function STAT1 mutations impair STAT3 activity in patients with chronic mucocutaneous candidiasis (CMC). European Journal of Immunology, 2015, 45, 2834-2846.	2.9	111
29	Non-Canonical Wnt Predominates in Activated Rat Hepatic Stellate Cells, Influencing HSC Survival and Paracrine Stimulation of Kupffer Cells. PLoS ONE, 2015, 10, e0142794.	2.5	34
30	The role of pancreatic stellate cells in pancreatic cancer. Surgical Oncology, 2015, 24, 232-238.	1.6	66
31	Differential DNA methylation of genes involved in fibrosis progression in non-alcoholic fatty liver disease and alcoholic liver disease. Clinical Epigenetics, 2015, 7, 25.	4.1	145
32	Alcohol directly stimulates epigenetic modifications in hepatic stellate cells. Journal of Hepatology, 2015, 62, 388-397.	3.7	76
33	Quiescent Hepatic Stellate Cells Functionally Contribute to the Hepatic Innate Immune Response via TLR3. PLoS ONE, 2014, 9, e83391.	2.5	26
34	Arrested development and the great escape – The role of cellular senescence in pancreatic cancer. International Journal of Biochemistry and Cell Biology, 2014, 57, 142-148.	2.8	20
35	The Mechanisms of HSC Activation and Epigenetic Regulation of HSCs Phenotypes. Current Pathobiology Reports, 2014, 2, 163-170.	3.4	11
36	A TLR2/S100A9/CXCL-2 signaling network is necessary for neutrophil recruitment in acute and chronic liver injury in the mouse. Journal of Hepatology, 2014, 60, 782-791.	3.7	130

#	Article	IF	Citations
37	A reversible model for periportal fibrosis and a refined alternative to bile duct ligation. Toxicology Research, 2014, 3, 98-109.	2.1	10
38	Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nature Communications, 2014, 5, 4172.	12.8	596
39	Epigenetic modifications as new targets for liver disease therapies. Journal of Hepatology, 2013, 59, 1349-1353.	3.7	35
40	Epigenetic regulation of wound healing and fibrosis. Current Opinion in Rheumatology, 2013, 25, 101-107.	4.3	68
41	Tumor progression locus 2/Cot is required for activation of extracellular regulated kinase in liver injury and toll-like receptor-induced TIMP-1 gene transcription in hepatic stellate cells in mice. Hepatology, 2013, 57, 1238-1249.	7.3	41
42	An experimental MODEL study to investigate the pathogenesis of oxaliplatin-induced liver injury Journal of Clinical Oncology, 2013, 31, 184-184.	1.6	0
43	Multigenerational epigenetic adaptation of the hepatic wound-healing response. Nature Medicine, 2012, 18, 1369-1377.	30.7	257
44	The NF-κB Subunit c-Rel Stimulates Cardiac Hypertrophy and Fibrosis. American Journal of Pathology, 2012, 180, 929-939.	3.8	65
45	Crossâ€talk between <scp>DNA</scp> methylation and active histone modifications regulates aberrant expression of <scp>ZAP</scp> 70 in <scp>CLL</scp> . Journal of Cellular and Molecular Medicine, 2012, 16, 2074-2084.	3.6	10
46	Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nature Communications, 2012, 3, 708.	12.8	693
47	Rosmarinic acid and baicalin epigenetically derepress peroxisomal proliferator-activated receptor \hat{l}^3 in hepatic stellate cells for their antifibrotic effect. Hepatology, 2012, 55, 1271-1281.	7.3	114
48	Histone methyltransferase ASH1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation. Hepatology, 2012, 56, 1129-1139.	7.3	108
49	Epigenetic cell fate regulation of hepatic stellate cells. Hepatology Research, 2011, 41, 675-682.	3.4	46
50	Stimulating healthy tissue regeneration by targeting the 5-HT2B receptor in chronic liver disease. Nature Medicine, 2011, 17, 1668-1673.	30.7	177
51	The c-Rel subunit of nuclear factor-l ^o B regulates murine liver inflammation, wound-healing, and hepatocyte proliferation. Hepatology, 2010, 51, 922-931.	7.3	52
52	Acetate, the key modulator of inflammatory responses in acute alcoholic hepatitis. Hepatology, 2010, 51, 1988-1997.	7.3	144
53	MeCP2 Controls an Epigenetic Pathway That Promotes Myofibroblast Transdifferentiation and Fibrosis. Gastroenterology, 2010, 138, 705-714.e4.	1.3	341
54	The NF-κB p50:p50:HDAC-1 repressor complex orchestrates transcriptional inhibition of multiple pro-inflammatory genes. Journal of Hepatology, 2010, 53, 519-527.	3.7	129

#	Article	IF	CITATION
55	Allele-Specific Regulation of Matrix Metalloproteinase-3 Gene by Transcription Factor NFκB. PLoS ONE, 2010, 5, e9902.	2.5	37
56	Transcriptional regulation of hepatic stellate cells. Advanced Drug Delivery Reviews, 2009, 61, 497-512.	13.7	97
57	JunD is a profibrogenic transcription factor regulated by Jun N-terminal kinase-independent phosphorylation. Hepatology, 2006, 44, 1432-1440.	7.3	42
58	Functional Analysis of HIV Type 1 Nef Reveals a Role for PAK2 as a Regulator of Cell Phenotype and Function in the Murine Dendritic Cell Line, DC2.4. Journal of Immunology, 2005, 175, 6560-6569.	0.8	11
59	Nuclear Factor-lºB1 (p50) Limits the Inflammatory and Fibrogenic Responses to Chronic Injury. American Journal of Pathology, 2005, 166, 695-708.	3.8	118
60	Basal Expression of lκBα Is Controlled by the Mammalian Transcriptional Repressor RBP-J (CBF1) and Its Activator Notch1. Journal of Biological Chemistry, 2003, 278, 24359-24370.	3.4	79
61	CD40 Induces Interleukin-6 Gene Transcription in Dendritic Cells. Journal of Biological Chemistry, 2002, 277, 17125-17138.	3.4	86
62	JunD Regulates Transcription of the Tissue Inhibitor of Metalloproteinases-1 and Interleukin-6 Genes in Activated Hepatic Stellate Cells. Journal of Biological Chemistry, 2001, 276, 24414-24421.	3.4	91