List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11836235/publications.pdf Version: 2024-02-01

Ιειένα Μάνν

#	Article	IF	CITATIONS
1	Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nature Communications, 2012, 3, 708.	12.8	693
2	Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nature Communications, 2014, 5, 4172.	12.8	596
3	MeCP2 Controls an Epigenetic Pathway That Promotes Myofibroblast Transdifferentiation and Fibrosis. Gastroenterology, 2010, 138, 705-714.e4.	1.3	341
4	Lengthâ€independent telomere damage drives postâ€mitotic cardiomyocyte senescence. EMBO Journal, 2019, 38, .	7.8	307
5	Multigenerational epigenetic adaptation of the hepatic wound-healing response. Nature Medicine, 2012, 18, 1369-1377.	30.7	257
6	Stimulating healthy tissue regeneration by targeting the 5-HT2B receptor in chronic liver disease. Nature Medicine, 2011, 17, 1668-1673.	30.7	177
7	Plasma DNA methylation: a potential biomarker for stratification of liver fibrosis in non-alcoholic fatty liver disease. Gut, 2017, 66, 1321-1328.	12.1	172
8	Differential DNA methylation of genes involved in fibrosis progression in non-alcoholic fatty liver disease. Clinical Epigenetics, 2015, 7, 25.	4.1	145
9	Acetate, the key modulator of inflammatory responses in acute alcoholic hepatitis. Hepatology, 2010, 51, 1988-1997.	7.3	144
10	A TLR2/S100A9/CXCL-2 signaling network is necessary for neutrophil recruitment in acute and chronic liver injury in the mouse. Journal of Hepatology, 2014, 60, 782-791.	3.7	130
11	The NF-κB p50:p50:HDAC-1 repressor complex orchestrates transcriptional inhibition of multiple pro-inflammatory genes. Journal of Hepatology, 2010, 53, 519-527.	3.7	129
12	Defective HNF4alpha-dependent gene expression as a driver of hepatocellular failure in alcoholic hepatitis. Nature Communications, 2019, 10, 3126.	12.8	124
13	Nuclear Factor-κB1 (p50) Limits the Inflammatory and Fibrogenic Responses to Chronic Injury. American Journal of Pathology, 2005, 166, 695-708.	3.8	118
14	Rosmarinic acid and baicalin epigenetically derepress peroxisomal proliferator-activated receptor Î ³ in hepatic stellate cells for their antifibrotic effect. Hepatology, 2012, 55, 1271-1281.	7.3	114
15	Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape. Journal of Hepatology, 2016, 64, 661-673.	3.7	112
16	Gainâ€ofâ€function STAT1 mutations impair STAT3 activity in patients with chronic mucocutaneous candidiasis (CMC). European Journal of Immunology, 2015, 45, 2834-2846.	2.9	111
17	Histone methyltransferase ASH1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation. Hepatology, 2012, 56, 1129-1139.	7.3	108
18	Transcriptional regulation of hepatic stellate cells. Advanced Drug Delivery Reviews, 2009, 61, 497-512.	13.7	97

#	Article	IF	CITATIONS
19	Non-parenchymal TREM-2 protects the liver from immune-mediated hepatocellular damage. Gut, 2019, 68, 533-546.	12.1	96
20	JunD Regulates Transcription of the Tissue Inhibitor of Metalloproteinases-1 and Interleukin-6 Genes in Activated Hepatic Stellate Cells. Journal of Biological Chemistry, 2001, 276, 24414-24421.	3.4	91
21	Epigenetics and Liver Fibrosis. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 125-134.	4.5	88
22	CD40 Induces Interleukin-6 Gene Transcription in Dendritic Cells. Journal of Biological Chemistry, 2002, 277, 17125-17138.	3.4	86
23	Basal Expression of ll̂ºBα Is Controlled by the Mammalian Transcriptional Repressor RBP-J (CBF1) and Its Activator Notch1. Journal of Biological Chemistry, 2003, 278, 24359-24370.	3.4	79
24	Liquid biopsy for liver diseases. Gut, 2018, 67, 2204-2212.	12.1	79
25	Alcohol directly stimulates epigenetic modifications in hepatic stellate cells. Journal of Hepatology, 2015, 62, 388-397.	3.7	76
26	Epigenetic regulation of wound healing and fibrosis. Current Opinion in Rheumatology, 2013, 25, 101-107.	4.3	68
27	The role of pancreatic stellate cells in pancreatic cancer. Surgical Oncology, 2015, 24, 232-238.	1.6	66
28	A Bioreactor Technology for Modeling Fibrosis in Human and Rodent Precision ut Liver Slices. Hepatology, 2019, 70, 1377-1391.	7.3	66
29	The NF-κB Subunit c-Rel Stimulates Cardiac Hypertrophy and Fibrosis. American Journal of Pathology, 2012, 180, 929-939.	3.8	65
30	A Proof-of-Concept for Epigenetic Therapy of Tissue Fibrosis: Inhibition of Liver Fibrosis Progression by 3-Deazaneplanocin A. Molecular Therapy, 2017, 25, 218-231.	8.2	65
31	Ammonia Scavenging Prevents Progression of Fibrosis in Experimental Nonalcoholic Fatty Liver Disease. Hepatology, 2020, 71, 874-892.	7.3	62
32	Rapamycin improves healthspan but not inflammaging in <i>nfl̂ºb1</i> ^{â^'/â^'} mice. Aging Cell, 2019, 18, e12882.	6.7	59
33	The c-Rel subunit of nuclear factor-κB regulates murine liver inflammation, wound-healing, and hepatocyte proliferation. Hepatology, 2010, 51, 922-931.	7.3	52
34	Epigenetic cell fate regulation of hepatic stellate cells. Hepatology Research, 2011, 41, 675-682.	3.4	46
35	JunD is a profibrogenic transcription factor regulated by Jun N-terminal kinase-independent phosphorylation. Hepatology, 2006, 44, 1432-1440.	7.3	42
36	Tumor progression locus 2/Cot is required for activation of extracellular regulated kinase in liver injury and toll-like receptor-induced TIMP-1 gene transcription in hepatic stellate cells in mice. Hepatology, 2013, 57, 1238-1249.	7.3	41

#	Article	IF	CITATIONS
37	Allele-Specific Regulation of Matrix Metalloproteinase-3 Gene by Transcription Factor NFκB. PLoS ONE, 2010, 5, e9902.	2.5	37
38	Epigenetic mechanisms and metabolic reprogramming in fibrogenesis: dual targeting of G9a and DNMT1 for the inhibition of liver fibrosis. Gut, 2021, 70, gutjnl-2019-320205.	12.1	36
39	Epigenetic modifications as new targets for liver disease therapies. Journal of Hepatology, 2013, 59, 1349-1353.	3.7	35
40	Integrated Multiomics Reveals Glucose Use Reprogramming and Identifies a Novel Hexokinase in Alcoholic Hepatitis. Gastroenterology, 2021, 160, 1725-1740.e2.	1.3	35
41	Non-Canonical Wnt Predominates in Activated Rat Hepatic Stellate Cells, Influencing HSC Survival and Paracrine Stimulation of Kupffer Cells. PLoS ONE, 2015, 10, e0142794.	2.5	34
42	Fibrogenic Activity of MECP2 Is Regulated by Phosphorylation in Hepatic Stellate Cells. Gastroenterology, 2019, 157, 1398-1412.e9.	1.3	27
43	Quiescent Hepatic Stellate Cells Functionally Contribute to the Hepatic Innate Immune Response via TLR3. PLoS ONE, 2014, 9, e83391.	2.5	26
44	Plasma cell-free DNA methylation: a liquid biomarker of hepatic fibrosis. Gut, 2018, 67, 1907-1908.	12.1	21
45	Arrested development and the great escape – The role of cellular senescence in pancreatic cancer. International Journal of Biochemistry and Cell Biology, 2014, 57, 142-148.	2.8	20
46	DNA methylation profiling identifies novel markers of progression in hepatitis B-related chronic liver disease. Clinical Epigenetics, 2016, 8, 48.	4.1	20
47	A Mammalian Target of Rapamycinâ€Perilipin 3 (mTORC1â€Plin3) Pathway is essential to Activate Lipophagy and Protects Against Hepatosteatosis. Hepatology, 2021, 74, 3441-3459.	7.3	20
48	Dynamic phosphorylation of RelA on Ser42 and Ser45 in response to TNFα stimulation regulates DNA binding and transcription. Open Biology, 2016, 6, 160055.	3.6	19
49	Variant Histone H2afv reprograms DNA methylation during early zebrafish development. Epigenetics, 2017, 12, 811-824.	2.7	19
50	c-Rel orchestrates energy-dependent epithelial and macrophage reprogramming in fibrosis. Nature Metabolism, 2020, 2, 1350-1367.	11.9	16
51	The role of exosomes in the pathogenesis of pancreatic ductal adenocarcinoma. International Journal of Biochemistry and Cell Biology, 2016, 75, 131-139.	2.8	15
52	HDAC1 interacts with the p50 NF-κB subunit via its nuclear localization sequence to constrain inflammatory gene expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 962-970.	1.9	14
53	Functional Analysis of HIV Type 1 Nef Reveals a Role for PAK2 as a Regulator of Cell Phenotype and Function in the Murine Dendritic Cell Line, DC2.4. Journal of Immunology, 2005, 175, 6560-6569.	0.8	11
54	The Mechanisms of HSC Activation and Epigenetic Regulation of HSCs Phenotypes. Current Pathobiology Reports, 2014, 2, 163-170.	3.4	11

#	Article	IF	CITATIONS
55	Crossâ€ŧalk between <scp>DNA</scp> methylation and active histone modifications regulates aberrant expression of <scp>ZAP</scp> 70 in <scp>CLL</scp> . Journal of Cellular and Molecular Medicine, 2012, 16, 2074-2084.	3.6	10
56	A reversible model for periportal fibrosis and a refined alternative to bile duct ligation. Toxicology Research, 2014, 3, 98-109.	2.1	10
57	RNA sequencing reveals changes in the microRNAome of transdifferentiating hepatic stellate cells that are conserved between human and rat. Scientific Reports, 2020, 10, 21708.	3.3	8
58	Serum transferrin as a biomarker of hepatocyte nuclear factor 4 alpha activity and hepatocyte function in liver diseases. BMC Medicine, 2021, 19, 39.	5.5	8
59	Therapeutic Strategies Toward Lactate Dehydrogenase Within the Tumor Microenvironment of Pancreatic Cancer. Pancreas, 2020, 49, 1364-1371.	1.1	7
60	cRel expression regulates distinct transcriptional and functional profiles driving fibroblast matrix production in systemic sclerosis. Rheumatology, 2020, 59, 3939-3951.	1.9	5
61	Interdependent Transcription of a Natural Sense/Antisense Transcripts Pair (SLC34A1/PFN3). Non-coding RNA, 2022, 8, 19.	2.6	1
62	An experimental MODEL study to investigate the pathogenesis of oxaliplatin-induced liver injury Journal of Clinical Oncology, 2013, 31, 184-184.	1.6	0