
Paul A Keifer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11835431/publications.pdf Version: 2024-02-01

DAILI A KEIEED

#	Article	IF	CITATIONS
1	WET Solvent Suppression and Its Applications to LC NMR and High-Resolution NMR Spectroscopy. Journal of Magnetic Resonance Series A, 1995, 117, 295-303.	1.6	530
2	Ecteinascidins 729, 743, 745, 759A, 759B, and 770: potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinata. Journal of Organic Chemistry, 1990, 55, 4512-4515.	3.2	451
3	High-Resolution 1H NMR in Solid-Phase Organic Synthesis. Journal of Organic Chemistry, 1994, 59, 7955-7956.	3.2	222
4	Seaweed resistance to microbial attack: A targeted chemical defense against marine fungi. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6916-6921.	7.1	221
5	A Comparison of NMR Spectra Obtained for Solid-Phase-Synthesis Resins Using Conventional High-Resolution, Magic-Angle-Spinning, and High-Resolution Magic-Angle-Spinning Probes. Journal of Magnetic Resonance Series A, 1996, 119, 65-75.	1.6	163
6	Influence of Resin Structure, Tether Length, and Solvent upon the High-Resolution1H NMR Spectra of Solid-Phase-Synthesis Resins. Journal of Organic Chemistry, 1996, 61, 1558-1559.	3.2	144
7	An NMR Method To Identify Nondestructively Chemical Compounds Bound to a Single Solid-Phase-Synthesis Bead for Combinatorial Chemistry Applications. Journal of the American Chemical Society, 1996, 118, 2305-2306.	13.7	129
8	Milnamide A, an unusual cytotoxic tripeptide from the marine sponge Auletta cf. constricta. Journal of Organic Chemistry, 1994, 59, 2932-2934.	3.2	88
9	High-resolution NMR techniques for solid-phase synthesis and combinatorial chemistry. Drug Discovery Today, 1997, 2, 468-478.	6.4	84
10	Direct-Injection NMR (DI-NMR):Â A Flow NMR Technique for the Analysis of Combinatorial Chemistry Libraries1. ACS Combinatorial Science, 2000, 2, 151-171.	3.3	67
11	ldentification of a Novel Glycosaminoglycan Core-like Molecule I. Journal of Biological Chemistry, 1995, 270, 9154-9163.	3.4	64
12	NMR tools for biotechnology. Current Opinion in Biotechnology, 1999, 10, 34-41.	6.6	57
13	Solution structure of the N-terminal amphitropic domain ofEscherichia coliglucose-specific enzyme IIA in membrane-mimetic micelles. Protein Science, 2003, 12, 1087-1096.	7.6	47
14	90� pulse width calibrations: How to read a pulse width array. Concepts in Magnetic Resonance, 1999, 11, 165-180.	1.3	43
15	Flow NMR applications in combinatorial chemistry. Current Opinion in Chemical Biology, 2003, 7, 388-394.	6.1	37
16	A Cyclized Didemnimide Alkaloid from the Caribbean AscidianDidemnumconchyliatum. Journal of Natural Products, 1999, 62, 389-391.	3.0	35
17	Novel steroids from Trichilia hirta as identified by nanoprobe INADEQUATE 2D-NMR spectroscopy. Tetrahedron Letters, 1996, 37, 7875-7878.	1.4	24
18	NMR spectroscopy in drug discovery: Tools for combinatorial chemistry, natural products, and metabolism research. , 2000, 55, 137-211.		24

PAUL A KEIFER

#	Article	IF	CITATIONS
19	Flow injection analysis NMR (FIA-NMR): a novel flow NMR technique that complements LC-NMR and direct injection NMR (DI-NMR). Magnetic Resonance in Chemistry, 2003, 41, 509-516.	1.9	21
20	Shape-Selective Recognition of a Model Okazaki Fragment By Geometrically-Constrained Bis-Distamycins. Journal of Biomolecular Structure and Dynamics, 1999, 17, 507-518.	3.5	19
21	NMR characterization of the Escherichia coli nitrogen regulatory protein IIANtr in solution and interaction with its partner protein, NPr. Protein Science, 2005, 14, 1082-1090.	7.6	19
22	Short‒chain diacyl phosphatidylglycerols: which one to choose for the NMR structural determination of a membrane‒associated peptide from <i>Escherichia coli</i> ?. Spectroscopy, 2004, 18, 257-264.	0.8	14
23	Chemical-shift referencing and resolution stability in gradient LC–NMR (acetonitrile:water). Journal of Magnetic Resonance, 2009, 199, 75-87.	2.1	11
24	Effects of detergent alkyl chain length and chemical structure on the properties of a micelle-bound bacterial membrane targeting peptide. Analytical Biochemistry, 2004, 331, 33-39.	2.4	11
25	Warifteine and methylwarifteine:1H and13C assignments by two-dimensional NMR spectroscopy. Magnetic Resonance in Chemistry, 2003, 41, 213-218.	1.9	10
26	Chemical-shift referencing and resolution stability in methanol:water gradient LC–NMR. Journal of Magnetic Resonance, 2010, 205, 130-140.	2.1	8
27	Stereochemistry and bonding in <i>N</i> â€substitutedâ€2â€phenylâ€3â€cyanoaziridines. Journal of Heterocyclic Chemistry, 1988, 25, 353-359.	2.6	4
28	NMR analysis tools for the peptide sciences. , 2002, , 396-398.		0