Ann J Hessell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1183424/publications.pdf Version: 2024-02-01

ANN I HESSELL

#	Article	IF	CITATIONS
1	Fc receptor but not complement binding is important in antibody protection against HIV. Nature, 2007, 449, 101-104.	27.8	828
2	Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature, 2007, 445, 732-737.	27.8	715
3	Antibody Protects Macaques against Vaginal Challenge with a Pathogenic R5 Simian/Human Immunodeficiency Virus at Serum Levels Giving Complete Neutralization In Vitro. Journal of Virology, 2001, 75, 8340-8347.	3.4	649
4	Effective, low-titer antibody protection against low-dose repeated mucosal SHIV challenge in macaques. Nature Medicine, 2009, 15, 951-954.	30.7	509
5	Broadly Neutralizing Human Anti-HIV Antibody 2G12 Is Effective in Protection against Mucosal SHIV Challenge Even at Low Serum Neutralizing Titers. PLoS Pathogens, 2009, 5, e1000433.	4.7	475
6	Broadly Neutralizing Monoclonal Antibodies 2F5 and 4E10 Directed against the Human Immunodeficiency Virus Type 1 gp41 Membrane-Proximal External Region Protect against Mucosal Challenge by Simian-Human Immunodeficiency Virus SHIV _{Ba-L} . Journal of Virology, 2010, 84, 1302-1313.	3.4	296
7	Limited or no protection by weakly or nonneutralizing antibodies against vaginal SHIV challenge of macaques compared with a strongly neutralizing antibody. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11181-11186.	7.1	243
8	Early short-term treatment with neutralizing human monoclonal antibodies halts SHIV infection in in infant macaques. Nature Medicine, 2016, 22, 362-368.	30.7	163
9	Use of broadly neutralizing antibodies for <scp>HIV</scp> â€1 prevention. Immunological Reviews, 2017, 275, 296-312.	6.0	131
10	A Nonfucosylated Variant of the anti-HIV-1 Monoclonal Antibody b12 Has Enhanced FcÎ ³ RIIIa-Mediated Antiviral Activity <i>In Vitro</i> but Does Not Improve Protection against Mucosal SHIV Challenge in Macaques. Journal of Virology, 2012, 86, 6189-6196.	3.4	110
11	Achieving Potent Autologous Neutralizing Antibody Responses against Tier 2 HIV-1 Viruses by Strategic Selection of Envelope Immunogens. Journal of Immunology, 2016, 196, 3064-3078.	0.8	56
12	Emergence of Broadly Neutralizing Antibodies and Viral Coevolution in Two Subjects during the Early Stages of Infection with Human Immunodeficiency Virus Type 1. Journal of Virology, 2014, 88, 12968-12981.	3.4	51
13	Reduced Cell-Associated DNA and Improved Viral Control in Macaques following Passive Transfer of a Single Anti-V2 Monoclonal Antibody and Repeated Simian/Human Immunodeficiency Virus Challenges. Journal of Virology, 2018, 92, .	3.4	51
14	Inhibition of HIV-1 Infectivity and Epithelial Cell Transfer by Human Monoclonal IgG and IgA Antibodies Carrying the b12 V Region. Journal of Immunology, 2007, 179, 3144-3152.	0.8	40
15	Envelope Variants Circulating as Initial Neutralization Breadth Developed in Two HIV-Infected Subjects Stimulate Multiclade Neutralizing Antibodies in Rabbits. Journal of Virology, 2014, 88, 12949-12967.	3.4	37
16	Single-dose bNAb cocktail or abbreviated ART post-exposure regimens achieve tight SHIV control without adaptive immunity. Nature Communications, 2020, 11, 70.	12.8	37
17	Passive and active antibody studies in primates to inform HIV vaccines. Expert Review of Vaccines, 2018, 17, 1-18.	4.4	36
18	Multimeric Epitope-Scaffold HIV Vaccines Target V1V2 and Differentially Tune Polyfunctional Antibody Responses. Cell Reports, 2019, 28, 877-895.e6.	6.4	36

ANN J HESSELL

#	Article	IF	CITATIONS
19	Advancing HIV Broadly Neutralizing Antibodies: From Discovery to the Clinic. Frontiers in Public Health, 2021, 9, 690017.	2.7	26
20	Neutralizing Antibodies and Control of HIV: Moves and Countermoves. Current HIV/AIDS Reports, 2012, 9, 64-72.	3.1	23
21	Induction of neutralizing antibodies in rhesus macaques using V3 mimotope peptides. Vaccine, 2016, 34, 2713-2721.	3.8	23
22	Simplifying the synthesis of SIgA: Combination of dIgA and rhSC using affinity chromatography. Methods, 2014, 65, 127-132.	3.8	20
23	Phagocytosis by an HIV antibody is associated with reduced viremia irrespective of enhanced complement lysis. Nature Communications, 2022, 13, 662.	12.8	18
24	Differential induction of anti-V3 crown antibodies with cradle- and ladle-binding modes in response to HIV-1 envelope vaccination. Vaccine, 2017, 35, 1464-1473.	3.8	15
25	Efficacy of silk fibroin biomaterial vehicle for <i>in vivo</i> mucosal delivery of Griffithsin and protection against HIV and SHIV infection <i>ex vivo</i> . Journal of the International AIDS Society, 2020, 23, e25628.	3.0	14
26	Divergent HIV-1-Directed Immune Responses Generated by Systemic and Mucosal Immunization with Replicating Single-Cycle Adenoviruses in Rhesus Macaques. Journal of Virology, 2019, 93, .	3.4	11
27	IL-33 enhances the kinetics and quality of the antibody response to a DNA and protein-based HIV-1 Env vaccine. Vaccine, 2019, 37, 2322-2330.	3.8	9
28	Rapid Induction of Multifunctional Antibodies in Rabbits and Macaques by Clade C HIV-1 CAP257 Envelopes Circulating During Epitope-Specific Neutralization Breadth Development. Frontiers in Immunology, 2020, 11, 984.	4.8	9
29	Virus Control in Vaccinated Rhesus Macaques Is Associated with Neutralizing and Capturing Antibodies against the SHIV Challenge Virus but Not with V1V2 Vaccine–Induced Anti-V2 Antibodies Alone. Journal of Immunology, 2021, 206, 1266-1283.	0.8	8
30	Non-neutralizing antibodies targeting the immunogenic regions of HIV-1 envelope reduce mucosal infection and virus burden in humanized mice. PLoS Pathogens, 2022, 18, e1010183.	4.7	8
31	Revisiting an IgG Fc Loss-of-Function Experiment: the Role of Complement in HIV Broadly Neutralizing Antibody b12 Activity. MBio, 2021, 12, e0174321.	4.1	7
32	Differential V2-directed antibody responses in non-human primates infected with SHIVs or immunized with diverse HIV vaccines. Nature Communications, 2022, 13, 903.	12.8	7
33	An HIV Vaccine Targeting the V2 Region of the HIV Envelope Induces a Highly Durable Polyfunctional Fc-Mediated Antibody Response in Rhesus Macaques. Journal of Virology, 2020, 94, .	3.4	6
34	Antibodies Tip the Balance Towards an HIV Cure. Trends in Immunology, 2019, 40, 375-377.	6.8	5
35	Polyfunctional Tier 2–Neutralizing Antibodies Cloned following HIV-1 Env Macaque Immunization Mirror Native Antibodies in a Human Donor. Journal of Immunology, 2021, 206, 999-1012.	0.8	5
36	Modified Adenovirus Prime-Protein Boost Clade C HIV Vaccine Strategy Results in Reduced Viral DNA in Blood and Tissues Following Tier 2 SHIV Challenge. Frontiers in Immunology, 2020, 11, 626464.	4.8	4

#	Article	IF	CITATIONS
37	CD4+ T Cells Are Dispensable for Induction of Broad Heterologous HIV Neutralizing Antibodies in Rhesus Macaques. Frontiers in Immunology, 2021, 12, 757811.	4.8	0