Lodewijk Dekker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/118336/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Use of BODIPY-Labeled ATP Analogues in the Development and Validation of a Fluorescence Polarization-Based Assay for Screening of Kinase Inhibitors. ACS Omega, 2020, 5, 9064-9070.	3.5	4
2	Crystal structures of the recombinant β-factor XIIa protease with bound Thr-Arg and Pro-Arg substrate mimetics. Acta Crystallographica Section D: Structural Biology, 2019, 75, 578-591.	2.3	14
3	Assessment of the cellular localisation of the annexin A2/S100A10 complex in human placenta. Journal of Molecular Histology, 2018, 49, 531-543.	2.2	11
4	Concise Review: Emerging Drugs Targeting Epithelial Cancer Stem-Like Cells. Stem Cells, 2017, 35, 839-850.	3.2	34
5	Assessment of the protein interaction between coagulation factorÂXII and corn trypsin inhibitor by molecular docking and biochemical validation. Journal of Thrombosis and Haemostasis, 2017, 15, 1818-1828.	3.8	11
6	Alkylation of Staurosporine to Derive a Kinase Probe for Fluorescence Applications. ChemMedChem, 2016, 11, 972-979.	3.2	6
7	Annexin A2 antibodies but not inhibitors of the annexin A2 heterotetramer impair productive HIV-1 infection of macrophages in vitro. Virology Journal, 2016, 13, 187.	3.4	12
8	Coagulation factorÂXII protease domain crystal structure. Journal of Thrombosis and Haemostasis, 2015, 13, 580-591.	3.8	48
9	<scp>A</scp> nnexin <scp>A</scp> 2 complexes with <scp>S</scp> 100 proteins: structure, function and pharmacological manipulation. British Journal of Pharmacology, 2015, 172, 1664-1676.	5.4	87
10	Design, synthesis and SAR exploration of tri-substituted 1,2,4-triazoles as inhibitors of the annexin A2–S100A10 protein interaction. Bioorganic and Medicinal Chemistry, 2014, 22, 5378-5391.	3.0	46
11	Protein interactions between surface annexin A2 and S100A10 mediate adhesion of breast cancer cells to microvascular endothelial cells. FEBS Letters, 2013, 587, 3210-3215.	2.8	57
12	Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Research, 2013, 15, R92.	5.0	320
13	Threeâ€Dimensional Pharmacophore Design and Biochemical Screening Identifies Substituted 1,2,4â€Triazoles as Inhibitors of the Annexinâ€A2–S100A10 Protein Interaction. ChemMedChem, 2012, 7, 1435-1446.	3.2	34
14	Development and evaluation of human AP endonuclease inhibitors in melanoma and glioma cell lines. British Journal of Cancer, 2011, 104, 653-663.	6.4	63
15	Design, Synthesis, and Structureâ^'Activity Relationship Exploration of 1-Substituted 4-Aroyl-3-hydroxy-5-phenyl-1 <i>H</i> -pyrrol-2(5 <i>H</i>)-one Analogues as Inhibitors of the Annexin A2â ´S100A10 Protein Interaction. Journal of Medicinal Chemistry, 2011, 54, 2080-2094.	6.4	58
16	A Cy5-Labeled S100A10 Tracer Used to Identify Inhibitors of the Protein Interaction With Annexin A2. Assay and Drug Development Technologies, 2010, 8, 85-95.	1.2	12
17	Subcellular localisation of the p40phox component of NADPH oxidase involves direct interactions between the Phox homology domain and F-actin. International Journal of Biochemistry and Cell Biology, 2010, 42, 1736-1743.	2.8	18
18	Protein Kinase C as an Effector of Lipid-Derived Second Messengers. Methods in Molecular Biology, 2009, 462, 1-11.	0.9	1

LODEWIJK DEKKER

#	Article	IF	CITATIONS
19	Editorial: Novel approaches to drug discovery in signal transduction. Biotechnology Journal, 2008, 3, 428-429.	3.5	0
20	Analysis of human Nav1.8 expressed in SH-SY5Y neuroblastoma cells. European Journal of Pharmacology, 2005, 528, 52-58.	3.5	26
21	PKC-Î [^] sensitizes Kir3.1/3.2 channels to changes in membrane phospholipid levels after M3 receptor activation in HEK-293 cells. American Journal of Physiology - Cell Physiology, 2005, 289, C543-C556.	4.6	40
22	UTP Induces Osteopontin Expression through a Coordinate Action of NFκB, Activator Protein-1, and Upstream Stimulatory Factor in Arterial Smooth Muscle Cells. Journal of Biological Chemistry, 2005, 280, 2708-2713.	3.4	39
23	NaV1.8 as a drug target for pain. , 2005, , 123-143.		1
24	Strategies to identify ion channel modulators: current and novel approaches to target neuropathic pain. Drug Discovery Today, 2004, 9, 410-418.	6.4	45
25	N-Formyl peptide receptor subtypes in human neutrophils activate l-plastin phosphorylation through different signal transduction intermediates. Biochemical Journal, 2004, 377, 469-477.	3.7	34
26	Lipid rafts determine efficiency of NADPH oxidase activation in neutrophils. FEBS Letters, 2003, 550, 101-106.	2.8	122
27	Involvement of protein kinase D in FcÎ ³ -receptor activation of the NADPH oxidase in neutrophils. Biochemical Journal, 2002, 363, 95.	3.7	13
28	Involvement of protein kinase D in Fcγ-receptor activation of the NADPH oxidase in neutrophils. Biochemical Journal, 2002, 363, 95-103.	3.7	18
29	Protein kinase C-δC2-like domain is a binding site for actin and enables actin redistribution in neutrophils. Biochemical Journal, 2001, 357, 39.	3.7	32
30	Protein kinase C-δ C2-like domain is a binding site for actin and enables actin redistribution in neutrophils. Biochemical Journal, 2001, 357, 39-47.	3.7	54
31	Regulation of a G protein-gated inwardly rectifying K+channel by a Ca2+-independent protein kinase C. Journal of Physiology, 2001, 534, 367-379.	2.9	64
32	Sequential Activation of Rac-1, SEK-1/MKK-4, and Protein Kinase Cl̂´Is Required for Interleukin-6-induced STAT3 Ser-727 Phosphorylation and Transactivation. Journal of Biological Chemistry, 2001, 276, 27709-27715.	3.4	75
33	Protein kinase C-β contributes to NADPH oxidase activation in neutrophils. Biochemical Journal, 2000, 347, 285.	3.7	49
34	Protein kinase C-β contributes to NADPH oxidase activation in neutrophils. Biochemical Journal, 2000, 347, 285-289.	3.7	160
35	SIGNAL TRANSDUCTION:Signals to Move Cells. Science, 2000, 287, 982-985.	12.6	106
36	Asymmetric signal transduction. Science, 2000, 287, 983-983.	12.6	1

LODEWIJK DEKKER

#	Article	IF	CITATIONS
37	Protein kinase C-beta contributes to NADPH oxidase activation in neutrophils. Biochemical Journal, 2000, 347 Pt 1, 285-9.	3.7	47
38	Components and organization of the nadph oxidase of phagocytic cells. Advances in Cellular and Molecular Biology of Membranes and Organelles, 1999, 5, 441-483.	0.3	7
39	Specific Involvement of PKC-ε in Sensitization of the Neuronal Response to Painful Heat. Neuron, 1999, 23, 617-624.	8.1	389
40	Direct interaction between p47phox and protein kinase C: evidence for targeting of protein kinase C by p47phox in neutrophils. Biochemical Journal, 1999, 344, 859-866.	3.7	78
41	Direct interaction between p47phox and protein kinase C: evidence for targeting of protein kinase C by p47phox in neutrophils. Biochemical Journal, 1999, 344, 859.	3.7	30
42	Direct interaction between p47phox and protein kinase C: evidence for targeting of protein kinase C by p47phox in neutrophils. Biochemical Journal, 1999, 344 Pt 3, 859-66.	3.7	27
43	Crystal structure of the C2 domain from protein kinase C-δ. Structure, 1998, 6, 885-894.	3.3	111
44	Preliminary X-ray analysis of a C2-like domain from protein kinase C-δ. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 693-696.	2.5	4
45	Components and Organisation of the NADPH Oxidase of Phagocytic Cells, the Paradigm for an Electron Transport Chain across the Plasma Membrane. , 1998, , 69-101.		11
46	Regulated Binding of the Protein Kinase C Substrate GAP-43 to the VO/C2 Region of Protein Kinase C-δ. Journal of Biological Chemistry, 1997, 272, 12747-12753.	3.4	73
47	PKC in rat cortical synaptosomes. NeuroReport, 1996, 8, 323-327.	1.2	6
48	Activation of PRK1 by Phosphatidylinositol 4,5-Bisphosphate and Phosphatidylinositol 3,4,5-Trisphosphate. Journal of Biological Chemistry, 1995, 270, 22412-22416.	3.4	125
49	The protein kinase C and protein kinase C related gene families. Current Opinion in Structural Biology, 1995, 5, 396-402.	5.7	117
50	Protein kinase C - a question of specificity. Trends in Biochemical Sciences, 1994, 19, 73-77.	7.5	930
51	Studies on the Role of B-50 (GAP-43) in the Mechanism of Ca2+-Induced Noradrenaline Release: Lack of Involvement of Protein Kinase C After the Ca2+Trigger. Journal of Neurochemistry, 1993, 60, 1264-1273.	3.9	48
52	Altered substrate selectivity of PKC-ĥ pseudosubstrate site mutants. FEBS Letters, 1993, 329, 129-133.	2.8	21
53	Interferon alpha induces protein kinase C-epsilon (PKC-epsilon) gene expression and a 4.7-kb PKC-epsilon-related transcript Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 6944-6948.	7.1	18
54	Mutagenesis of the regulatory domain of rat protein kinase C-eta. A molecular basis for restricted histone kinase activity. Journal of Biological Chemistry, 1993, 268, 19498-504.	3.4	50

LODEWIJK DEKKER

#	Article	IF	CITATIONS
55	Biochemical properties of rat protein kinase C-η expressed in COS cells. FEBS Letters, 1992, 312, 195-199.	2.8	39
56	Noradrenaline Release from Streptolysin O-Permeated Rat Cortical Synaptosomes: Effects of Calcium, Phorbol Esters, Protein Kinase Inhibitors, and Antibodies to the Neuron-Specific Protein Kinase C Substrate B-50 (GAP-43). Journal of Neurochemistry, 1991, 56, 1146-1153.	3.9	74
57	Chapter 14: Transmitter release: target of regulation by protein kinase C?. Progress in Brain Research, 1991, 89, 209-233.	1.4	56
58	Depolarization-Induced Phosphorylation of the Protein Kinase C Substrate B-50 (GAP-43) in Rat Cortical Synaptosomes. Journal of Neurochemistry, 1990, 54, 1645-1652.	3.9	69
59	Evidence for a relationship between B-50 (GAP-43) and [3H]noradrenaline release in rat brain synaptosomes. European Journal of Pharmacology, 1990, 188, 113-122.	2.6	31
60	The Role of Protein Kinase C Substrate B-50 (GAP-43) in Neurotransmitter Release and Long-Term Potentiation. Advances in Experimental Medicine and Biology, 1990, 268, 347-358.	1.6	11
61	Determination of Changes in the Phosphorylation State of the Neuron-Specific Protein Kinase C Substrate B-50 (GAP43) by Quantitative Immunoprecipitation. Journal of Neurochemistry, 1989, 52, 17-23.	3.9	60
62	Phosphorylation of B-50 (GAP43) Is Correlated with Neurotransmitter Release in Rat Hippocampal Slices. Journal of Neurochemistry, 1989, 52, 24-30.	3.9	184
63	Inhibition of noradrenaline release by antibodies to B-50 (GAP-43). Nature, 1989, 342, 74-76.	27.8	273
64	Modulation of B-50 Phosphorylation and Polyphosphoinositide Metabolism in Synaptic Plasma Membranes by Protein Kinase C, Phorbol Diesters and Acth. Journal of Receptors and Signal Transduction, 1988, 8, 345-361.	1.2	17
65	The Role of Protein Phosphorylation in Long-Term Potentiation. , 1988, , 235-248.		1
66	A Radioimmunoassay for the Phosphoprotein B-50: Distribution in Rat Brain. Journal of Neurochemistry, 1986, 46, 1366-1369.	3.9	47