Mohsen Taheri Andani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11833223/publications.pdf

Version: 2024-02-01

24 papers

2,235 citations

394421 19 h-index 794594 19 g-index

24 all docs

24 docs citations

times ranked

24

1691 citing authors

#	Article	IF	CITATIONS
1	Fabrication of NiTi through additive manufacturing: A review. Progress in Materials Science, 2016, 83, 630-663.	32.8	555
2	Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomaterialia, 2014, 10, 4058-4070.	8.3	215
3	The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting. Journal of Alloys and Compounds, 2016, 677, 204-210.	5 . 5	198
4	Texture, aging, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys. Materials Science & Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 686, 1-10.	5.6	139
5	Spatter formation in selective laser melting process using multi-laser technology. Materials and Design, 2017, 131, 460-469.	7.0	134
6	Mechanical and shape memory properties of porous Ni 50.1 Ti 49.9 alloys manufactured by selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68, 224-231.	3.1	126
7	Improving surface finish and wear resistance of additive manufactured nickel-titanium by ultrasonic nano-crystal surface modification. Journal of Materials Processing Technology, 2017, 249, 433-440.	6. 3	121
8	Metals for bone implants: safety, design, and efficacy. Biomanufacturing Reviews, 2016, 1, 1.	4.8	112
9	Multi-scale shape memory effect recovery in NiTi alloys additive manufactured by selective laser melting and laser directed energy deposition. Journal of Materials Processing Technology, 2017, 250, 55-64.	6. 3	99
10	Shape memory response of porous NiTi shape memory alloys fabricated by selective laser melting. Journal of Materials Science: Materials in Medicine, 2018, 29, 40.	3.6	76
11	Process development and characterization of additively manufactured nickel–titanium shape memory parts. Journal of Intelligent Material Systems and Structures, 2016, 27, 2653-2660.	2.5	74
12	A study on the effect of energy input on spatter particles creation during selective laser melting process. Additive Manufacturing, 2018, 20, 33-43.	3.0	68
13	Thermomechanical characterization of Ni-rich NiTi fabricated by selective laser melting. Smart Materials and Structures, 2016, 25, 035005.	3.5	66
14	Achieving biocompatible stiffness in NiTi through additive manufacturing. Journal of Intelligent Material Systems and Structures, 2016, 27, 2661-2671.	2.5	58
15	Micromechanics modeling of metallic alloys 3D printed by selective laser melting. Materials and Design, 2018, 137, 204-213.	7.0	44
16	Independent tuning of stiffness and toughness of additively manufactured titanium-polymer composites: Simulation, fabrication, and experimental studies. Journal of Materials Processing Technology, 2016, 238, 22-29.	6. 3	33
17	Modeling the cyclic shape memory and superelasticity of selective laser melting fabricated NiTi. International Journal of Mechanical Sciences, 2018, 138-139, 54-61.	6.7	28
18	Additive Manufacturing of Nitinol Shape Memory Alloys to Overcome Challenges in Conventional Nitinol Fabrication., 2014,,.		23

#	Article	IF	CITATIONS
19	Damage modeling of metallic alloys made by additive manufacturing. Materials Science & Damage modeling of metallic alloys made by additive manufacturing. Materials Science & Damage Representation of the Damage Represent	5.6	23
20	A quantitative study of stress fields ahead of a slip band blocked by a grain boundary in unalloyed magnesium. Scientific Reports, 2020, 10, 3084.	3.3	20
21	An Investigation of Effective Process Parameters on Phase Transformation Temperature of Nitinol Manufactured by Selective Laser Melting. , 2014, , .		15
22	A Modified Microplane Model Using Transformation Surfaces to Consider Loading History on Phase Transition in Shape Memory Alloys. , 2014, , .		4
23	Modeling and Validation of Additively Manufactured Porous Nitinol Implants. , 2014, , .		4
24	A three-dimensional geometrical model for the microstructure of additively manufactured metals. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 0, , 146442072210939.	1.1	0