Kak-Ming Ling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11831379/publications.pdf

Version: 2024-02-01

840776 940533 16 460 11 16 citations h-index g-index papers 16 16 16 871 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	DNA Methylation Profiles of Airway Epithelial Cells and PBMCs from Healthy, Atopic and Asthmatic Children. PLoS ONE, 2012, 7, e44213.	2.5	101
2	Matrix metalloproteinase activation by free neutrophil elastase contributes to bronchiectasis progression in early cystic fibrosis. European Respiratory Journal, 2015, 46, 384-394.	6.7	93
3	Conditionally reprogrammed primary airway epithelial cells maintain morphology, lineage and disease specific functional characteristics. Scientific Reports, 2017, 7, 17971.	3.3	77
4	Assessing the unified airway hypothesis in children via transcriptional profiling of the airway epithelium. Journal of Allergy and Clinical Immunology, 2020, 145, 1562-1573.	2.9	35
5	Vitamin D supplementation of initially vitamin D-deficient mice diminishes lung inflammation with limited effects on pulmonary epithelial integrity. Physiological Reports, 2017, 5, e13371.	1.7	27
6	The airway epithelium is a direct source of matrix degrading enzymes in bronchiolitis obliterans syndrome. Journal of Heart and Lung Transplantation, 2011, 30, 1175-1185.	0.6	22
7	Alpha-1 Antitrypsin Mitigates the Inhibition of Airway Epithelial Cell Repair by Neutrophil Elastase. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 341-349.	2.9	19
8	Aberrant cell migration contributes to defective airway epithelial repair in childhood wheeze. JCI Insight, 2020, 5, .	5.0	19
9	Bronchial brushings for investigating airway inflammation and remodelling. Respirology, 2011, 16, 725-737.	2.3	16
10	Reduced transforming growth factor \hat{l}^21 (TGF $\hat{a}\in\hat{l}^21$) in the repair of airway epithelial cells of children with asthma. Respirology, 2016, 21, 1219-1226.	2.3	14
11	Rhinovirus Infection Drives Complex Host Airway Molecular Responses in Children With Cystic Fibrosis. Frontiers in Immunology, 2020, 11, 1327.	4.8	14
12	Azithromycin Partially Mitigates Dysregulated Repair of Lung Allograft Small Airway Epithelium. Transplantation, 2020, 104, 1166-1176.	1.0	8
13	lvacaftor or lumacaftor/ivacaftor treatment does not alter the core CF airway epithelial gene response to rhinovirus. Journal of Cystic Fibrosis, 2021, 20, 97-105.	0.7	6
14	Dysregulated Notch Signaling in the Airway Epithelium of Children with Wheeze. Journal of Personalized Medicine, 2021, 11, 1323.	2.5	4
15	Elucidating the Interaction of CF Airway Epithelial Cells and Rhinovirus: Using the Host-Pathogen Relationship to Identify Future Therapeutic Strategies. Frontiers in Pharmacology, 2018, 9, 1270.	3. 5	3
16	Productive Infection of Human Embryonic Stem Cell-Derived NKX2.1+ Respiratory Progenitors With Human Rhinovirus. Stem Cells Translational Medicine, 2015, 4, 603-614.	3.3	2