Chong-Yaw Wee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11828213/publications.pdf Version: 2024-02-01

CHONC-YAW WEE

#	Article	IF	CITATIONS
1	Identification of MCI individuals using structural and functional connectivity networks. NeuroImage, 2012, 59, 2045-2056.	4.2	334
2	State-space model with deep learning for functional dynamics estimation in resting-state fMRI. NeuroImage, 2016, 129, 292-307.	4.2	242
3	Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns. Human Brain Mapping, 2013, 34, 3411-3425.	3.6	215
4	Highâ€order restingâ€state functional connectivity network for MCI classification. Human Brain Mapping, 2016, 37, 3282-3296.	3.6	204
5	Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's Disease and mild cognitive impairment identification. NeuroImage, 2014, 84, 466-475.	4.2	198
6	Enriched white matter connectivity networks for accurate identification of MCI patients. NeuroImage, 2011, 54, 1812-1822.	4.2	191
7	Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification. Brain Structure and Function, 2014, 219, 641-656.	2.3	160
8	DICCCOL: Dense Individualized and Common Connectivity-Based Cortical Landmarks. Cerebral Cortex, 2013, 23, 786-800.	2.9	153
9	Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification. Brain Imaging and Behavior, 2016, 10, 342-356.	2.1	153
10	On the computational aspects of Zernike moments. Image and Vision Computing, 2007, 25, 967-980.	4.5	134
11	A brief review on multi-task learning. Multimedia Tools and Applications, 2018, 77, 29705-29725.	3.9	131
12	Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data. NeuroImage, 2015, 118, 219-230.	4.2	130
13	Resting-State Multi-Spectrum Functional Connectivity Networks for Identification of MCI Patients. PLoS ONE, 2012, 7, e37828.	2.5	127
14	Integration of Network Topological and Connectivity Properties for Neuroimaging Classification. IEEE Transactions on Biomedical Engineering, 2014, 61, 576-589.	4.2	125
15	Hyper-connectivity of functional networks for brain disease diagnosis. Medical Image Analysis, 2016, 32, 84-100.	11.6	113
16	Topological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification. Human Brain Mapping, 2014, 35, 2876-2897.	3.6	98
17	Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion. NeuroImage, 2014, 91, 386-400.	4.2	87
18	Joint feature-sample selection and robust diagnosis of Parkinson's disease from MRI data. NeuroImage, 2016, 141, 206-219.	4.2	87

CHONG-YAW WEE

#	Article	IF	CITATIONS
19	Diagnosis of autism spectrum disorders using regional and interregional morphological features. Human Brain Mapping, 2014, 35, 3414-3430.	3.6	77
20	Identification of infants at highâ€risk for autism spectrum disorder using multiparameter multiscale white matter connectivity networks. Human Brain Mapping, 2015, 36, 4880-4896.	3.6	75
21	Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations. NeuroImage: Clinical, 2019, 23, 101929.	2.7	75
22	Disrupted Brain Functional Network in Internet Addiction Disorder: A Resting-State Functional Magnetic Resonance Imaging Study. PLoS ONE, 2014, 9, e107306.	2.5	72
23	Multimodal hyper-connectivity of functional networks using functionally-weighted LASSO for MCI classification. Medical Image Analysis, 2019, 52, 80-96.	11.6	66
24	Multiâ€task diagnosis for autism spectrum disorders using multiâ€modality features: A multiâ€center study. Human Brain Mapping, 2017, 38, 3081-3097.	3.6	64
25	Diagnosis of Autism Spectrum Disorders Using Temporally Distinct Resting‣tate Functional Connectivity Networks. CNS Neuroscience and Therapeutics, 2016, 22, 212-219.	3.9	59
26	Multiple-Network Classification of Childhood Autism Using Functional Connectivity Dynamics. Lecture Notes in Computer Science, 2014, 17, 177-184.	1.3	57
27	Enhancing the representation of functional connectivity networks by fusing multiâ€view information for autism spectrum disorder diagnosis. Human Brain Mapping, 2019, 40, 833-854.	3.6	47
28	Image quality assessment by discrete orthogonal moments. Pattern Recognition, 2010, 43, 4055-4068.	8.1	46
29	Altered Modular Organization of Structural Cortical Networks in Children with Autism. PLoS ONE, 2013, 8, e63131.	2.5	45
30	Supervised Discriminative Group Sparse Representation for Mild Cognitive Impairment Diagnosis. Neuroinformatics, 2015, 13, 277-295.	2.8	44
31	New computational methods for full and subset Zernike moments. Information Sciences, 2004, 159, 203-220.	6.9	41
32	Novel Effective Connectivity Inference Using Ultra-Group Constrained Orthogonal Forward Regression and Elastic Multilayer Perceptron Classifier for MCI Identification. IEEE Transactions on Medical Imaging, 2019, 38, 1227-1239.	8.9	40
33	Constrained Sparse Functional Connectivity Networks for MCI Classification. Lecture Notes in Computer Science, 2012, 15, 212-219.	1.3	36
34	Identification of progressive mild cognitive impairment patients using incomplete longitudinal MRI scans. Brain Structure and Function, 2016, 221, 3979-3995.	2.3	33
35	Sparse Multivariate Autoregressive Modeling for Mild Cognitive Impairment Classification. Neuroinformatics, 2014, 12, 455-469.	2.8	32
36	Neonatal neural networks predict children behavioral profiles later in life. Human Brain Mapping, 2017, 38, 1362-1373.	3.6	32

CHONG-YAW WEE

#	Article	IF	CITATIONS
37	MRI-Based Intelligence Quotient (IQ) Estimation with Sparse Learning. PLoS ONE, 2015, 10, e0117295.	2.5	29
38	MCI Identification by Joint Learning on Multiple MRI Data. Lecture Notes in Computer Science, 2015, 9350, 78-85.	1.3	27
39	High-Order Graph Matching Based Feature Selection for Alzheimer's Disease Identification. Lecture Notes in Computer Science, 2013, 16, 311-318.	1.3	25
40	Efficient computation of radial moment functions using symmetrical property. Pattern Recognition, 2006, 39, 2036-2046.	8.1	24
41	Maternal sensitivity predicts anterior hippocampal functional networks in early childhood. Brain Structure and Function, 2019, 224, 1885-1895.	2.3	24
42	Multilevel Deficiency of White Matter Connectivity Networks in Alzheimer's Disease: A Diffusion MRI Study with DTI and HARDI Models. Neural Plasticity, 2016, 2016, 1-14.	2.2	23
43	Discriminative Group Sparse Representation for Mild Cognitive Impairment Classification. Lecture Notes in Computer Science, 2013, , 131-138.	1.3	22
44	Multi-task feature selection via supervised canonical graph matching for diagnosis of autism spectrum disorder. Brain Imaging and Behavior, 2016, 10, 33-40.	2.1	20
45	Fusion of ULS Group Constrained High- and Low-Order Sparse Functional Connectivity Networks for MCI Classification. Neuroinformatics, 2020, 18, 1-24.	2.8	19
46	Fast computation of geometric moments using a symmetric kernel. Pattern Recognition, 2008, 41, 2369-2380.	8.1	16
47	Image sharpness measure using eigenvalues. , 2008, , .		15
48	Improving Estimation of Fiber Orientations in Diffusion MRI Using Inter-Subject Information Sharing. Scientific Reports, 2016, 6, 37847.	3.3	15
49	Large Deformation Image Classification Using Generalized Locality-Constrained Linear Coding. Lecture Notes in Computer Science, 2013, 16, 292-299.	1.3	12
50	Inter-modality Relationship Constrained Multi-Task Feature Selection for AD/MCI Classification. Lecture Notes in Computer Science, 2013, 16, 308-315.	1.3	12
51	Machine Learning Techniques for AD/MCI Diagnosis and Prognosis. Intelligent Systems Reference Library, 2014, , 147-179.	1.2	11
52	Behavioral Heterogeneity in Relation with Brain Functional Networks in Young Children. Cerebral Cortex, 2018, 28, 3322-3331.	2.9	9
53	Temporally Dynamic Resting-State Functional Connectivity Networks for Early MCI Identification. Lecture Notes in Computer Science, 2013, , 139-146.	1.3	9
54	Identification of Infants at Risk for Autism Using Multi-parameter Hierarchical White Matter Connectomes. Lecture Notes in Computer Science, 2015, 9352, 170-177.	1.3	9

CHONG-YAW WEE

#	Article	IF	CITATIONS
55	Sorting of rice grains using Zernike moments. Journal of Real-Time Image Processing, 2009, 4, 353-363.	3.5	7
56	Fronto-parietal numerical networks in relation with early numeracy in young children. Brain Structure and Function, 2019, 224, 263-275.	2.3	7
57	Identification of MCI Using Optimal Sparse MAR Modeled Effective Connectivity Networks. Lecture Notes in Computer Science, 2013, 16, 319-327.	1.3	6
58	Classification of rice grains using fuzzy artmap neural network. , 0, , .		5
59	Quality Assessment of Gaussian Blurred Images Using Symmetric Geometric Moments. , 2007, , .		5
60	Fast Computation of Zernike Moments For Rice Sorting System. , 2007, , .		5
61	Novel Effective Connectivity Network Inference for MCI Identification. Lecture Notes in Computer Science, 2017, 2017, 316-324.	1.3	5
62	Integrating Multiple Network Properties for MCI Identification. Lecture Notes in Computer Science, 2013, , 9-16.	1.3	4
63	Multimodal Hyper-connectivity Networks for MCI Classification. Lecture Notes in Computer Science, 2017, 10433, 433-441.	1.3	3
64	Structural Connectivity Guided Sparse Effective Connectivity for MCI Identification. Lecture Notes in Computer Science, 2017, 10541, 299-306.	1.3	3
65	Block-Based Statistics for Robust Non-parametric Morphometry. Lecture Notes in Computer Science, 2015, 9467, 62-70.	1.3	2
66	Angular Resolution Enhancement of Diffusion MRI Data Using Inter-Subject Information Transfer. Mathematics and Visualization, 2016, 2016, 145-157.	0.6	2
67	Identification of Individuals with MCI via Multimodality Connectivity Networks. Lecture Notes in Computer Science, 2011, 14, 277-284.	1.3	2
68	Joint Feature-Sample Selection and Robust Classification for Parkinson's Disease Diagnosis. Lecture Notes in Computer Science, 2016, , 127-136.	1.3	2
69	Bootstrap model order selection of Zernike polynomial expansion for classification of rice. , 0, , .		1
70	Brain Disease Classification and Progression Using Machine Learning Techniques. , 2014, , 3-32.		1
71	Fusion of High-Order and Low-Order Effective Connectivity Networks for MCI Classification. Lecture Notes in Computer Science, 2017, 2017, 307-315.	1.3	1
72	Adaptive Functional Connectivity Network Using Parallel Hierarchical BiLSTM for MCI Diagnosis. Lecture Notes in Computer Science, 2019, , 507-515.	1.3	1

	#	CITATIONS
73 Comparative analysis of eigenvalues-based and Tchebichef moments-based focus measures. , 2008, , . 0	73	0