
Shao-Nian Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1182820/publications.pdf Version: 2024-02-01

Shao-Nian Yang

#	Article	IF	CITATIONS
1	Intracameral Microimaging of Maturation of Human iPSC Derivatives into Islet Endocrine Cells. Cell Transplantation, 2022, 31, 096368972110665.	2.5	2
2	Inositol hexakisphosphate primes syndapin I/PACSIN 1 activation in endocytosis. Cellular and Molecular Life Sciences, 2022, 79, 286.	5.4	1
3	Expression of truncated Kir6.2 promotes insertion of functionally inverted ATP-sensitive K+ channels. Scientific Reports, 2021, 11, 21539.	3.3	Ο
4	Enhanced expression of β cell Ca _V 3.1 channels impairs insulin release and glucose homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 448-453.	7.1	14
5	The eye as a novel imaging site in diabetes research. , 2019, 197, 103-121.		15
6	lgGs from patients with amyotrophic lateral sclerosis and diabetes target CaVα2δ1 subunits impairing islet cell function and survival. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26816-26822.	7.1	11
7	Blocking Ca2+ Channel β3 Subunit Reverses Diabetes. Cell Reports, 2018, 24, 922-934.	6.4	21
8	TLR3-/4-Priming Differentially Promotes Ca2+ Signaling and Cytokine Expression and Ca2+-Dependently Augments Cytokine Release in hMSCs. Scientific Reports, 2016, 6, 23103.	3.3	16
9	Photoactivation of hypericin decreases the viability of RINm5F insulinoma cells through reduction in JNK/ERK phosphorylation and elevation of caspase-9/caspase-3 cleavage and Bax-to-Bcl-2 ratio. Bioscience Reports, 2015, 35, .	2.4	26
10	CaV1.2 and CaV1.3 channel hyperactivation in mouse islet \hat{I}^2 cells exposed to type 1 diabetic serum. Cellular and Molecular Life Sciences, 2015, 72, 1197-1207.	5.4	14
11	Apolipoprotein CIII hyperactivates β cell CaV1 channels through SR-BI/β1 integrin-dependent coactivation of PKA and Src. Cellular and Molecular Life Sciences, 2014, 71, 1289-1303.	5.4	13
12	lonic mechanisms in pancreatic β cell signaling. Cellular and Molecular Life Sciences, 2014, 71, 4149-4177.	5.4	70
13	Inositol hexakisphosphate suppresses excitatory neurotransmission via synaptotagmin-1 C2B domain in the hippocampal neuron. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12183-12188.	7.1	18
14	Akt Signals Upstream of L-Type Calcium Channels to Optimize Insulin Secretion. Pancreas, 2012, 41, 15-21.	1.1	11
15	Subthreshold α ₂ -Adrenergic Activation Counteracts Glucagon-Like Peptide-1 Potentiation of Glucose-Stimulated Insulin Secretion. Experimental Diabetes Research, 2011, 2011, 1-7.	3.8	5
16	Glutamate Is a Positive Autocrine Signal for Glucagon Release. Cell Metabolism, 2008, 7, 545-554.	16.2	186
17	Glucose Recruits KATP Channels via Non-Insulin-Containing Dense-Core Granules. Cell Metabolism, 2007, 6, 217-228.	16.2	36
18	The Role of Voltage-Gated Calcium Channels in Pancreatic β-Cell Physiology and Pathophysiology. Endocrine Reviews, 2006, 27, 621-676.	20.1	222

Shao-Nian Yang

#	Article	IF	CITATIONS
19	β-Cell CaVchannel regulation in physiology and pathophysiology. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E16-E28.	3.5	92
20	Transthyretin constitutes a functional component in pancreatic Â-cell stimulus-secretion coupling. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17020-17025.	7.1	89
21	CaV2.3 channel and PKCλ: new players in insulin secretion. Journal of Clinical Investigation, 2005, 115, 16-20.	8.2	28
22	CaV2.3 channel and PKCλ: new players in insulin secretion. Journal of Clinical Investigation, 2005, 115, 16-20.	8.2	21
23	Apolipoprotein CIII promotes Ca2+-dependent cell death in type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10090-10094.	7.1	77
24	Removal of Ca2+ Channel β3 Subunit Enhances Ca2+ Oscillation Frequency and Insulin Exocytosis. Cell, 2004, 119, 273-284.	28.9	105
25	Suppression of Î ² Cell Energy Metabolism and Insulin Release by PGC-1α. Developmental Cell, 2003, 5, 73-83.	7.0	134
26	Cytosolic Multiple Inositol Polyphosphate Phosphatase in the Regulation of Cytoplasmic Free Ca2+ Concentration. Journal of Biological Chemistry, 2003, 278, 46210-46218.	3.4	28
27	Modulation of L-Type Ca2+ Channels by Distinct Domains Within SNAP-25. Diabetes, 2002, 51, 1425-1436.	0.6	76
28	Inositol hexakisphosphate increases Lâ€ŧype Ca2+channel activity by stimulation of adenylyl cyclase. FASEB Journal, 2001, 15, 1753-1763.	0.5	44
29	Cyclin-dependent Kinase 5 Promotes Insulin Exocytosis. Journal of Biological Chemistry, 2001, 276, 34199-34205.	3.4	87
30	Munc-18 Associates with Syntaxin and Serves as a Negative Regulator of Exocytosis in the Pancreatic β-Cell. Journal of Biological Chemistry, 2000, 275, 41521-41527.	3.4	82
31	Selective Induction of LTP and LTD by Postsynaptic [Ca ²⁺] _i Elevation. Journal of Neurophysiology, 1999, 81, 781-787.	1.8	463