## Sanjoy Banerjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11826623/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries. Nature<br>Communications, 2017, 8, 14424.                                                                                                     | 12.8 | 216       |
| 2  | Interfacial Rheology of Asphaltenes at Oil–Water Interfaces and Interpretation of the Equation of State. Langmuir, 2013, 29, 4750-4759.                                                                                                    | 3.5  | 212       |
| 3  | Adsorption Kinetics of Asphaltenes at the Oil–Water Interface and Nanoaggregation in the Bulk.<br>Langmuir, 2012, 28, 9986-9995.                                                                                                           | 3.5  | 199       |
| 4  | Breaking the 2 V Barrier in Aqueous Zinc Chemistry: Creating 2.45 and 2.8 V MnO <sub>2</sub> –Zn<br>Aqueous Batteries. ACS Energy Letters, 2019, 4, 2144-2146.                                                                             | 17.4 | 142       |
| 5  | Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized<br>detection of airborne molecules. Proceedings of the National Academy of Sciences of the United<br>States of America, 2007, 104, 18898-18901. | 7.1  | 139       |
| 6  | Zinc morphology in zinc–nickel flow assisted batteries and impact on performance. Journal of Power<br>Sources, 2011, 196, 2340-2345.                                                                                                       | 7.8  | 129       |
| 7  | Rechargeable Zinc Alkaline Anodes for Long-Cycle Energy Storage. Chemistry of Materials, 2017, 29,<br>4819-4832.                                                                                                                           | 6.7  | 120       |
| 8  | Turbulence modification by large-scale organized electrohydrodynamic flows. Physics of Fluids, 1998, 10, 1742-1756.                                                                                                                        | 4.0  | 114       |
| 9  | Studies on cocurrent gasâ€liquid flow in helically coiled tubes. I. Flow patterns, pressure drop and<br>holdup. Canadian Journal of Chemical Engineering, 1969, 47, 445-453.                                                               | 1.7  | 109       |
| 10 | Direct numerical simulation of nearâ€interface turbulence in coupled gasâ€liquid flow. Physics of Fluids,<br>1996, 8, 1643-1665.                                                                                                           | 4.0  | 108       |
| 11 | Film inversion of cocurrent two-phase flow in helical coils. AICHE Journal, 1967, 13, 189-191.                                                                                                                                             | 3.6  | 107       |
| 12 | Mass Transfer to Falling Wavy Liquid Films in Turbulent Flow. Industrial & Engineering Chemistry<br>Fundamentals, 1968, 7, 22-27.                                                                                                          | 0.7  | 106       |
| 13 | Rechargeability and economic aspects of alkaline zinc–manganese dioxide cells for electrical storage<br>and load leveling. Journal of Power Sources, 2015, 276, 7-18.                                                                      | 7.8  | 104       |
| 14 | Overview of Asphaltene Nanostructures and Thermodynamic Applications. Energy & Fuels, 2020,<br>34, 15082-15105.                                                                                                                            | 5.1  | 101       |
| 15 | Surface divergence models for scalar exchange between turbulent streams. International Journal of<br>Multiphase Flow, 2004, 30, 963-977.                                                                                                   | 3.4  | 99        |
| 16 | Incorporating forcing terms in cascaded lattice Boltzmann approach by method of central moments.<br>Physical Review E, 2009, 80, 036702.                                                                                                   | 2.1  | 93        |
| 17 | Long-Term Adsorption Kinetics of Asphaltenes at the Oil–Water Interface: A Random Sequential<br>Adsorption Perspective. Langmuir, 2014, 30, 8381-8390.                                                                                     | 3.5  | 80        |
| 18 | Impact of anode substrates on electrodeposited zinc over cycling in zinc-anode rechargeable alkaline<br>batteries. Electrochimica Acta, 2016, 212, 603-613.                                                                                | 5.2  | 80        |

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Dynamic subgrid scale modeling of turbulent flows using lattice-Boltzmann method. Physica A:<br>Statistical Mechanics and Its Applications, 2009, 388, 2640-2658.                                   | 2.6  | 77        |
| 20 | Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows. Physical Review E, 2009, 79, 026703.                                                      | 2.1  | 76        |
| 21 | Asphaltene-Laden Interfaces Form Soft Glassy Layers in Contraction Experiments: A Mechanism for Coalescence Blocking. Langmuir, 2014, 30, 12795-12803.                                              | 3.5  | 71        |
| 22 | Leak detection in liquefied gas pipelines by artificial neural networks. AICHE Journal, 1998, 44,<br>2675-2688.                                                                                     | 3.6  | 67        |
| 23 | On the Three-Dimensional Central Moment Lattice Boltzmann Method. Journal of Statistical Physics, 2011, 143, 747-794.                                                                               | 1.2  | 67        |
| 24 | Air–water gas transfer and near-surface motions. Journal of Fluid Mechanics, 2013, 733, 588-624.                                                                                                    | 3.4  | 64        |
| 25 | An indicator of zinc morphology transition in flowing alkaline electrolyte. Journal of Power<br>Sources, 2012, 211, 119-128.                                                                        | 7.8  | 63        |
| 26 | Electrodeposition of preferentially oriented zinc for flow-assisted alkaline batteries. Journal of<br>Power Sources, 2014, 256, 145-152.                                                            | 7.8  | 63        |
| 27 | Hetaerolite Profiles in Alkaline Batteries Measured by High Energy EDXRD. Journal of the Electrochemical Society, 2015, 162, A162-A168.                                                             | 2.9  | 63        |
| 28 | A conversion-based highly energy dense Cu <sup>2+</sup> intercalated Bi-birnessite/Zn alkaline<br>battery. Journal of Materials Chemistry A, 2017, 5, 15845-15854.                                  | 10.3 | 63        |
| 29 | Going beyond Intercalation Capacity of Aqueous Batteries by Exploiting Conversion Reactions of Mn<br>and Zn electrodes for Energyâ€Đense Applications. Advanced Energy Materials, 2019, 9, 1902270. | 19.5 | 59        |
| 30 | Interfacial Properties of Asphaltenes at Toluene–Water Interfaces. Langmuir, 2015, 31, 4878-4886.                                                                                                   | 3.5  | 57        |
| 31 | Mixture Effect on the Dilatation Rheology of Asphaltenes-Laden Interfaces. Langmuir, 2017, 33, 1927-1942.                                                                                           | 3.5  | 56        |
| 32 | Applicability of the Langmuir Equation of State for Asphaltene Adsorption at the Oil–Water Interface:<br>Coal-Derived, Petroleum, and Synthetic Asphaltenes. Energy & Fuels, 2015, 29, 3584-3590.   | 5.1  | 55        |
| 33 | Real-time materials evolution visualized within intact cycling alkaline batteries. Journal of Materials<br>Chemistry A, 2014, 2, 2757-2764.                                                         | 10.3 | 53        |
| 34 | Development and testing of an economic grid-scale flow-assisted zinc/nickel-hydroxide alkaline battery. Journal of Power Sources, 2014, 264, 49-58.                                                 | 7.8  | 50        |
| 35 | A Lateral Microfluidic Cell for Imaging Electrodeposited Zinc near the Shorting Condition. Journal of the Electrochemical Society, 2010, 157, A1279.                                                | 2.9  | 49        |
| 36 | A calcium hydroxide interlayer as a selective separator for rechargeable alkaline Zn/MnO2 batteries.<br>Electrochemistry Communications, 2017, 81, 136-140.                                         | 4.7  | 49        |

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | An In Situ Synchrotron Study of Zinc Anode Planarization by a Bismuth Additive. Journal of the Electrochemical Society, 2014, 161, A275-A284.                                                                                 | 2.9 | 48        |
| 38 | Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion. Chemical Engineering Science, 2017, 168, 403-413.                                      | 3.8 | 47        |
| 39 | Gas evolution in a flow-assisted zinc–nickel oxide battery. Journal of Power Sources, 2011, 196,<br>6583-6587.                                                                                                                | 7.8 | 46        |
| 40 | Operando identification of the point of [Mn2]O4 spinel formation during γ-MnO2 discharge within batteries. Journal of Power Sources, 2016, 321, 135-142.                                                                      | 7.8 | 46        |
| 41 | Inertial flow transitions of a suspension in Taylor–Couette geometry. Journal of Fluid Mechanics, 2018, 835, 936-969.                                                                                                         | 3.4 | 43        |
| 42 | A measure of near-surface fluid motions that predicts air-water gas transfer in a wide range of conditions. Geophysical Research Letters, 2005, 32, n/a-n/a.                                                                  | 4.0 | 42        |
| 43 | Comparison of void fraction measurements using different techniques in two-phase flow bubble column reactors. International Journal of Multiphase Flow, 2018, 102, 119-129.                                                   | 3.4 | 38        |
| 44 | A method for three-dimensional interfacial particle image velocimetry (3D-IPIV) of an air–water interface. Measurement Science and Technology, 2009, 20, 045403.                                                              | 2.6 | 37        |
| 45 | Accessing the second electron capacity of MnO2 by exploring complexation and intercalation reactions in energy dense alkaline batteries. International Journal of Hydrogen Energy, 2018, 43, 8480-8487.                       | 7.1 | 36        |
| 46 | Multigrid lattice Boltzmann method for accelerated solution of elliptic equations. Journal of Computational Physics, 2014, 265, 172-194.                                                                                      | 3.8 | 32        |
| 47 | Transport phenomena at interfaces between turbulent fluids. AICHE Journal, 2008, 54, 344-349.                                                                                                                                 | 3.6 | 31        |
| 48 | Studies on cocurrent gasâ€liquid flow in helically coiled tubes. II. Theory and experiments on turbulent<br>mass transfer with and without chemical reaction. Canadian Journal of Chemical Engineering, 1970,<br>48, 542-551. | 1.7 | 30        |
| 49 | Rapid electrochemical synthesis of Î-MnO2 from Î <sup>3</sup> -MnO2 and unleashing its performance as an energy dense electrode. Materials Today Energy, 2017, 6, 198-210.                                                    | 4.7 | 30        |
| 50 | Wave–turbulence interaction in freeâ€surface channel flows. Physics of Fluids A, Fluid Dynamics, 1992,<br>4, 2727-2738.                                                                                                       | 1.6 | 28        |
| 51 | TURBULENCE STRUCTURE AND TRANSPORT MECHANISMS AT INTERFACES. , 1990, , .                                                                                                                                                      |     | 27        |
| 52 | Lagrangian simulation of turbulent particle dispersion in electrostatic precipitators. AICHE Journal, 1997, 43, 1403-1413.                                                                                                    | 3.6 | 26        |
| 53 | Morphological Evolution of Nanocluster Aggregates and Single Crystals in Alkaline Zinc<br>Electrodeposition. Journal of Physical Chemistry C, 2014, 118, 8656-8666.                                                           | 3.1 | 26        |
| 54 | Turbulence and heat exchange in condensing vapor-liquid flow. Physics of Fluids, 2008, 20, .                                                                                                                                  | 4.0 | 25        |

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Steady state convergence acceleration of the generalized lattice Boltzmann equation with forcing term through preconditioning. Journal of Computational Physics, 2009, 228, 746-769. | 3.8  | 25        |
| 56 | Upwellings, Downdrafts, and Whirlpools: Dominant Structures in Free Surface Turbulence. Applied<br>Mechanics Reviews, 1994, 47, S166-S172.                                           | 10.1 | 24        |
| 57 | Hydrodynamic Self-Consistent Field Theory for Inhomogeneous Polymer Melts. Physical Review<br>Letters, 2006, 97, 114501.                                                             | 7.8  | 21        |
| 58 | Computation of turbulent flow and secondary motions in a square duct using a forced generalized lattice Boltzmann equation. Physical Review E, 2009, 79, 026704.                     | 2.1  | 21        |
| 59 | Zincate-Blocking-Functionalized Polysulfone Separators for Secondary Zn–MnO <sub>2</sub><br>Batteries. ACS Applied Materials & Interfaces, 2020, 12, 50406-50417.                    | 8.0  | 21        |
| 60 | An Operando Study of the Initial Discharge of Bi and Bi/Cu Modified MnO <sub>2</sub> . Journal of the Electrochemical Society, 2018, 165, A2935-A2947.                               | 2.9  | 20        |
| 61 | Electroactive ZnO: Mechanisms, Conductivity, and Advances in Zn Alkaline Battery Cycling. Advanced<br>Energy Materials, 2022, 12, .                                                  | 19.5 | 20        |
| 62 | Direct simulation of turbulent particle transport in electrostatic precipitators. AICHE Journal, 1993, 39, 1910-1919.                                                                | 3.6  | 19        |
| 63 | Nanoscale velocity–drag force relationship in thin liquid layers measured by atomic force<br>microscopy. Applied Physics Letters, 2004, 85, 3881-3883.                               | 3.3  | 19        |
| 64 | Asphaltene Nanoscience and Reservoir Fluid Gradients, Tar Mat Formation, and the Oil-Water<br>Interface. , 2013, , .                                                                 |      | 19        |
| 65 | Liquid-hexatic-solid phase transition of a hard-core lattice gas with third neighbor exclusion. Journal of Chemical Physics, 2019, 151, 104702.                                      | 3.0  | 19        |
| 66 | An Improved Three-Dimensional Level Set Method for Gas-Liquid Two-Phase Flows. Journal of Fluids<br>Engineering, Transactions of the ASME, 2004, 126, 578-585.                       | 1.5  | 18        |
| 67 | Sixth P. V. Danckwerts Memorial Lecture presented at Glazier's Hall, London, U.K Chemical<br>Engineering Science, 1992, 47, 1793-1817.                                               | 3.8  | 17        |
| 68 | Material Failure Mechanisms of Alkaline Zn Rechargeable Conversion Electrodes. ACS Applied Energy<br>Materials, 2021, 4, 3381-3392.                                                  | 5.1  | 17        |
| 69 | Chemical hydrodynamics of a downward microbubble flow for intensification of gasâ€fed bioreactors.<br>AICHE Journal, 2018, 64, 1399-1411.                                            | 3.6  | 16        |
| 70 | Numerical method for hydrodynamic transport of inhomogeneous polymer melts. Journal of<br>Computational Physics, 2007, 224, 681-698.                                                 | 3.8  | 14        |
| 71 | Structure–Dynamic Function Relations of Asphaltenes. Energy & Fuels, 2021, 35, 13610-13632.                                                                                          | 5.1  | 14        |
| 72 | Scale-up of a downflow bubble column: Experimental investigations. Chemical Engineering Journal, 2020, 386, 121447.                                                                  | 12.7 | 13        |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Nanoscale resolution microchannel flow velocimetry by atomic force microscopy. Applied Physics<br>Letters, 2006, 89, 153123.                                                                                       | 3.3  | 11        |
| 74 | Non-equilibrium particle-field simulations of polymer-nanocomposite dynamics. Chemical Engineering Science, 2009, 64, 4754-4757.                                                                                   | 3.8  | 10        |
| 75 | The Air-Water Interface: Turbulence and Scalar Exchange. Environmental Science and Engineering, 2007, , 87-101.                                                                                                    | 0.2  | 10        |
| 76 | Effect of Premixed Asphaltenes and Demulsifier on Oil-Water Interfacial Properties. Journal of Dispersion Science and Technology, 2015, 36, 1465-1472.                                                             | 2.4  | 9         |
| 77 | An Investigation of the Lattice Boltzmann Method for Large Eddy Simulation of Complex Turbulent<br>Separated Flow. Journal of Fluids Engineering, Transactions of the ASME, 2013, 135, .                           | 1.5  | 8         |
| 78 | Driving Zn-MnO2 grid-scale batteries: A roadmap to cost-effective energy storage. MRS Energy & Sustainability, 2022, 9, 13-18.                                                                                     | 3.0  | 8         |
| 79 | Mass velocity measurement in steam-water flow by pitot tubes. AICHE Journal, 1977, 23, 385-387.                                                                                                                    | 3.6  | 7         |
| 80 | Modeling of Interphase Turbulent Transport Processes. Industrial & Engineering Chemistry<br>Research, 2007, 46, 3063-3068.                                                                                         | 3.7  | 7         |
| 81 | Study of Asphaltene Deposition onto Stainless-Steel Surfaces Using Quartz Crystal Microbalance with Dissipation. Energy & Fuels, 2020, 34, 9283-9295.                                                              | 5.1  | 7         |
| 82 | Computation of transitional flow past a circular cylinder using multiblock lattice Boltzmann method with a dynamic subgrid scale model. Fluid Dynamics Research, 2013, 45, 055510.                                 | 1.3  | 6         |
| 83 | Glassy dynamics and equilibrium state on the honeycomb lattice: Role of surface diffusion and desorption on surface crowding. Physical Review E, 2021, 103, 022801.                                                | 2.1  | 6         |
| 84 | Adsorption kinetics and thermodynamic properties of a binary mixture of hard-core particles on a square lattice. Journal of Chemical Physics, 2021, 154, 074705.                                                   | 3.0  | 6         |
| 85 | Hydroxyl Conducting Hydrogels Enable Low-Maintenance Commercially Sized Rechargeable Zn–MnO2<br>Batteries for Use in Solar Microgrids. Polymers, 2022, 14, 417.                                                    | 4.5  | 6         |
| 86 | Modeling the Multicomponent Compositional Effects of Asphaltenes on Interfacial Phenomena.<br>Energy & Fuels, 2020, 34, 13673-13685.                                                                               | 5.1  | 5         |
| 87 | Reducing Zinc Redistribution and Extending Cycle Life Via Electrochemical Synthesis of Zinc/Zinc<br>Oxide Anodes in Rechargeable Alkaline Batteries. Journal of the Electrochemical Society, 2021, 168,<br>040514. | 2.9  | 5         |
| 88 | ELECTRODEPOSITION MODELING USING COUPLED PHASE-FIELD AND LATTICE BOLTZMANN APPROACH.<br>International Journal of Modern Physics C, 2014, 25, 1340018.                                                              | 1.7  | 4         |
| 89 | Hydrodynamics under the jet-array of a downflow microbubble column: Performance intensification.<br>Chemical Engineering and Processing: Process Intensification, 2018, 130, 326-331.                              | 3.6  | 4         |
| 90 | The advent of membrane-less zinc-anode aqueous batteries with lithium battery-like voltage. Materials<br>Horizons, 2022, 9, 2160-2171.                                                                             | 12.2 | 4         |

| #   | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Ion-Selective Graphene Oxide/Polyvinyl Alcohol Composite Membranes for Rechargeable Alkaline Zinc<br>Manganese Dioxide Batteries. ACS Applied Energy Materials, 0, , .                                                                         | 5.1  | 4         |
| 92  | Inertial Frame Independent Forcing for Discrete Velocity Boltzmann Equation: Implications for Filtered Turbulence Simulation. Communications in Computational Physics, 2012, 12, 732-766.                                                      | 1.7  | 3         |
| 93  | Numerical and Experimental Analysis of Single Phase Jet Interactions. , 2016, , .                                                                                                                                                              |      | 3         |
| 94  | Symposium on Particle-Turbulence Interaction. Applied Mechanics Reviews, 1994, 47, S43-S43.                                                                                                                                                    | 10.1 | 2         |
| 95  | Numerical Simulations of Bubble Growth and Detachment in Microgravity and Normal Gravity Shear<br>Flows. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers<br>Series B B-hen, 2005, 71, 1256-1264. | 0.2  | 2         |
| 96  | Comparison of Gas Hold-Up Profiles in Co-Current, Counter-Current and Batch Bubble Column<br>Reactors Measured Using Gamma Densitometry and Surface of Revolution Method. , 2016, , .                                                          |      | 2         |
| 97  | Effect of Surfactant Addition on Void Fraction Distributions Measured by a Wire Mesh Sensor. , 2016, ,                                                                                                                                         |      | 2         |
| 98  | Rechargeable Zn-MnO <sub>2</sub> batteries for utility load management and renewable integration. , 2018, , .                                                                                                                                  |      | 2         |
| 99  | Aqueous Mn-Zn and Ni-Zn Batteries for Sustainable Energy Storage. , 2021, , 1-26.                                                                                                                                                              |      | 1         |
| 100 | Conservative Implicit Method for Shock Wave Calculations. AIAA Journal, 1979, 17, 537-540.                                                                                                                                                     | 2.6  | 0         |
| 101 | Phase-field Modeling of Dendritic Zinc Deposition in Zinc-Nickel Flow Batteries. ECS Meeting Abstracts, 2011, , .                                                                                                                              | 0.0  | 0         |
| 102 | Application of Coupled Lattice Boltzmann and Phase-Field Methods for Multiphase Flow Simulations. , 2013, , .                                                                                                                                  |      | 0         |