
Dinesh Gautam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11825678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Brain Insulin Receptor in Control of Body Weight and Reproduction. Science, 2000, 289, 2122-2125.	12.6	1,993
2	Role for neuronal insulin resistance in neurodegenerative diseases. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3100-3105.	7.1	563
3	Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nature Reviews Drug Discovery, 2007, 6, 721-733.	46.4	541
4	Muscarinic acetylcholine receptors: novel opportunities for drug development. Nature Reviews Drug Discovery, 2014, 13, 549-560.	46.4	337
5	A chemical-genetic approach to study G protein regulation of β cell function in vivo. Proceedings of the United States of America, 2009, 106, 19197-19202.	7.1	287
6	A critical role for β cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metabolism, 2006, 3, 449-461.	16.2	246
7	Muscarinic Stimulation of Pancreatic Insulin and Glucagon Release Is Abolished in M3 Muscarinic Acetylcholine Receptor–Deficient Mice. Diabetes, 2004, 53, 1714-1720.	0.6	170
8	Cholinergic Stimulation of Salivary Secretion Studied with M1 and M3 Muscarinic Receptor Single- and Double-Knockout Mice. Molecular Pharmacology, 2004, 66, 260-267.	2.3	134
9	Beneficial metabolic effects of M3 muscarinic acetylcholine receptor deficiency. Cell Metabolism, 2006, 4, 363-375.	16.2	83
10	Conditional disruption of lκB kinase 2 fails to prevent obesity-induced insulin resistance. Journal of Clinical Investigation, 2004, 113, 474-481.	8.2	79
11	RGS4 is a negative regulator of insulin release from pancreatic β-cells in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7999-8004.	7.1	67
12	A Novel Experimental Strategy to Assess the Metabolic Effects of Selective Activation of a Gq-Coupled Receptor in Hepatocytes In Vivo. Endocrinology, 2013, 154, 3539-3551.	2.8	56
13	Distinct Muscarinic Acetylcholine Receptor Subtypes Contribute to Stability and Growth, But Not Compensatory Plasticity, of Neuromuscular Synapses. Journal of Neuroscience, 2009, 29, 14942-14955.	3.6	53
14	Cholinergic Stimulation of Amylase Secretion from Pancreatic Acinar Cells Studied with Muscarinic Acetylcholine Receptor Mutant Mice. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 995-1002.	2.5	51
15	Hepatic Muscarinic Acetylcholine Receptors Are Not Critically Involved in Maintaining Glucose Homeostasis in Mice. Diabetes, 2009, 58, 2776-2787.	0.6	46
16	Metabolic Roles of the M3Muscarinic Acetylcholine Receptor Studied with M3Receptor Mutant Mice: A Review. Journal of Receptor and Signal Transduction Research, 2008, 28, 93-108.	2.5	45
17	Novel insights into the function of β-cell M3 muscarinic acetylcholine receptors: therapeutic implications. Trends in Endocrinology and Metabolism, 2011, 22, 74-80.	7.1	45
18	Muscarinic acetylcholine receptor knockout mice show distinct synaptic plasticity impairments in the visual cortex. Journal of Physiology, 2006, 577, 829-840.	2.9	41

DINESH GAUTAM

#	Article	IF	CITATIONS
19	Acetylcholine modulates cortical synaptic transmission via different muscarinic receptors, as studied with receptor knockout mice. Journal of Physiology, 2005, 566, 907-919.	2.9	38
20	Beneficial Metabolic Effects Caused by Persistent Activation of β-Cell M3 Muscarinic Acetylcholine Receptors in Transgenic Mice. Endocrinology, 2010, 151, 5185-5194.	2.8	38
21	Neuronal M ₃ muscarinic acetylcholine receptors are essential for somatotroph proliferation and normal somatic growth. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6398-6403.	7.1	36
22	Opposing Functions of Spinal M2, M3, and M4 Receptor Subtypes in Regulation of GABAergic Inputs to Dorsal Horn Neurons Revealed by Muscarinic Receptor Knockout Mice. Molecular Pharmacology, 2006, 69, 1048-1055.	2.3	27
23	M ₁ -M ₃ Muscarinic Acetylcholine Receptor-Deficient Mice: Novel Phenotypes. Journal of Molecular Neuroscience, 2006, 30, 157-160.	2.3	25
24	Critical metabolic roles of β-cell M3 muscarinic acetylcholine receptors. Life Sciences, 2012, 91, 986-991.	4.3	24
25	Control of Glycinergic Input to Spinal Dorsal Horn Neurons by Distinct Muscarinic Receptor Subtypes Revealed Using Knockout Mice. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 963-971.	2.5	19
26	G Proteinâ€Coupled Receptor (GPCR) Signaling Pathways in Betaâ€Cells. FASEB Journal, 2009, 23, 329.1.	0.5	0