
Birandra K Sinha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11825048/publications.pdf Version: 2024-02-01

RIDANDDA K SINHA

#	Article	IF	CITATIONS
1	NCX-4040, a Unique Nitric Oxide Donor, Induces Reversal of Drug-Resistance in Both ABCB1- and ABCG2-Expressing Multidrug Human Cancer Cells. Cancers, 2021, 13, 1680.	3.7	9
2	Elucidation of Mechanisms of Topotecan-Induced Cell Death in Human Breast MCF-7 Cancer Cells by Gene Expression Analysis. Frontiers in Genetics, 2020, 11, 775.	2.3	12
3	Reversal of drug resistance by JS-K and nitric oxide in ABCB1- and ABCC2-expressing multi-drug resistant human tumor cells. Biomedicine and Pharmacotherapy, 2019, 120, 109468.	5.6	19
4	Nitric oxide reverses drug resistance by inhibiting ATPase activity of p-glycoprotein in human multi-drug resistant cancer cells. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2806-2814.	2.4	30
5	Synergistic enhancement of topotecan-induced cell death by ascorbic acid in human breast MCF-7 tumor cells. Free Radical Biology and Medicine, 2017, 113, 406-412.	2.9	16
6	Nitric oxide inhibits ATPase activity and induces resistance to topoisomerase II-poisons in human MCF-7 breast tumor cells. Biochemistry and Biophysics Reports, 2017, 10, 252-259.	1.3	8
7	Nitric Oxide: Friend or Foe in Cancer Chemotherapy and Drug Resistance: A Perspective. Journal of Cancer Science & Therapy, 2016, 8, 244-251.	1.7	8
8	Nitric oxide inhibits topoisomerase II activity and induces resistance to topoisomerase II-poisons in human tumor cells. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1519-1527.	2.4	20
9	Is Metabolic Activation of Topoisomerase II Poisons Important In The Mechanism Of Cytotoxicity?. Journal of Drug Metabolism & Toxicology, 2015, 06, .	0.1	17
10	Nitric Oxide Down-Regulates Topoisomerase I and Induces Camptothecin Resistance in Human Breast MCF-7 Tumor Cells. PLoS ONE, 2015, 10, e0141897.	2.5	19
11	Biotransformation of Hydrazine Dervatives in the Mechanism of Toxicity. Journal of Drug Metabolism & Toxicology, 2014, 05, .	0.1	14
12	DNA Cleavage and Detection of DNA Radicals Formed from Hydralazine and Copper (II) by ESR and Immuno-Spin Trapping. Chemical Research in Toxicology, 2014, 27, 674-682.	3.3	17
13	Role of Nitric Oxide in the Chemistry and Anticancer Activity of Etoposide (VP-16,213). Chemical Research in Toxicology, 2013, 26, 379-387.	3.3	18
14	Effect of Nitric Oxide on the Anticancer Activity of the Topoisomerase-Active Drugs Etoposide and Adriamycin in Human Melanoma Cells. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 607-614.	2.5	20
15	Construction of a recombinant adeno-associated virus (rAAV) vector expressing murine interleukin-12 (IL-12). Cancer Gene Therapy, 2000, 7, 308-315.	4.6	12
16	Cytotoxicity and DNA damage associated with pyrazoloacridine in MCF-7 breast cancer cells. Biochemical Pharmacology, 1996, 51, 1649-1659.	4.4	23
17	Topoisomerase Inhibitors. Drugs, 1995, 49, 11-19.	10.9	154
18	Free radical formation by ansamycin benzoquinone in human breast tumor cells: Implications for cytotoxicity and resistance. Free Radical Biology and Medicine, 1994, 17, 191-200.	2.9	25

Birandra K Sinha

#	Article	IF	CITATIONS
19	Oncogene overexpression and de novo drug-resistance in human prostate cancer cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1994, 1226, 89-96.	3.8	22
20	Suramin inhibits DNA damage in human prostate cancer cells treated with topoisomerase inhibitors in vitro. Prostate, 1993, 23, 25-36.	2.3	13
21	Doxorubicin-induced oxygen free radical formation in sensitive and doxorubicin-resistant variants of rat glioblastoma cell lines. FEBS Letters, 1993, 322, 295-298.	2.8	15
22	Doxorubicin-induced oxygen free radical formation in sensitive and doxorubicin-resistant variants of rat glioblastoma cell lines. FEBS Letters, 1993, 326, 302-305.	2.8	15
23	Synergistic interactions of etoposide and interleukin-1α are not due to DNA damage in human melanoma cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1993, 1180, 231-235.	3.8	6
24	Etoposide-induced DNA damage in human tumor cells: requirement for cellular activating factors. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1991, 1097, 111-116.	3.8	9
25	Biochemical and pharmacological characterization of MCF-7 drug-sensitive and AdrR multidrug-resistant human breast tumor xenografts in athymic nude mice. Biochemical Pharmacology, 1991, 42, 391-402.	4.4	36
26	Cytochrome P-450- and Peroxidase-Dependent Activation of Procarbazine and Iproniazid in Mammalian Cells. Free Radical Research Communications, 1991, 15, 189-195.	1.8	9
27	Role of oxygen free radical formation in the mechanism of menogaril resistance in multidrug resistant tumor cells. Chemico-Biological Interactions, 1990, 76, 89-99.	4.0	4
28	Free radicals and anticancer drug resistance: Oxygen free radicals in the mechanisms of drug cytotoxicity and resistance by certain tumors. Free Radical Biology and Medicine, 1990, 8, 567-581.	2.9	152
29	Structure-activity relations, cytotoxicity and topoisomerase II dependent cleavage induced by pendulum ring analogues of etoposide. European Journal of Cancer & Clinical Oncology, 1990, 26, 590-593.	0.7	24
30	Coppier ion-dependent oxy-radical mediated DNA damage from dihydroxy derivative of etoposide. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1990, 1096, 81-83.	3.8	17
31	Tyrosinase-Induced Free Radical Formation From VP-16,213: Relationship To Cytotoxicity. Free Radical Research Communications, 1990, 10, 287-293.	1.8	16
32	DNA damage, cytotoxicity and free radical formation by mitomycin C in human cells. Chemico-Biological Interactions, 1989, 71, 63-78.	4.0	46
33	Free radicals in anticancer drug pharmacology. Chemico-Biological Interactions, 1989, 69, 293-317.	4.0	89
34	Resistance of paraquat and adriamycin in human breast tumor cells: role of free radical formation. Biochimica Et Biophysica Acta - Molecular Cell Research, 1989, 1010, 304-310.	4.1	16
35	Characterization of free radicals produced during oxidation of etoposide (VP-16) and its catechol and quinone derivatives. An ESR study. Biochemistry, 1989, 28, 4839-4846.	2.5	62
36	Iron-dependent hydroxyl radical formation and DNA damage from a novel metabolite of the clinically active antitumor drug VP-16. FEBS Letters, 1988, 227, 240-244.	2.8	32

Birandra K Sinha

#	Article	IF	CITATIONS
37	Role of Free Radicals in Etoposide (Vp-16,213) Action. , 1988, 49, 765-768.		1
38	Adriamycin-stimulated hydroxyl radical formation in human breast tumor cells. Biochemical Pharmacology, 1987, 36, 793-796.	4.4	97
39	In vitro metabolism of etoposide (VP-16-213) by liver microsomes and irreversible binding of reactive intermediates to microsomal proteins. Biochemical Pharmacology, 1987, 36, 527-536.	4.4	69
40	Activation of hydrazine derivatives to free radicals in the perfused rat liver: a spin-trapping study. Biochimica Et Biophysica Acta - General Subjects, 1987, 924, 261-269.	2.4	32
41	Differential formation of hydroxyl radicals by adriamycin in sensitive and resistant MCF-7 human breast tumor cells: implications for the mechanism of action. Biochemistry, 1987, 26, 3776-3781.	2.5	196
42	One-electron reduction of daunomycin, daunomycinone, and 7-deoxydaunomycinone by the xanthine/xanthine oxidase system: detection of semiquinone free radicals by electron spin resonance. Journal of the American Chemical Society, 1987, 109, 348-351.	13.7	68
43	Interactions of the antitumor drug, etoposide, with reduced thiols in vitro and in vivo. Chemico-Biological Interactions, 1987, 62, 237-247.	4.0	28
44	Formation of superoxide and hydroxyl radicals from 1-methyl-4-phenylpyridinium ion(MPP+): Reductive activation by NADPH cytochrome P-450 reductase. Biochemical and Biophysical Research Communications, 1986, 135, 583-588.	2.1	87
45	Peroxidative free radical formation and O-demethylation of etoposide(VP-16) and teniposide(VM-26). Biochemical and Biophysical Research Communications, 1986, 135, 215-220.	2.1	67
46	Microsomal interactions and inhibition of lipid peroxidation by etoposide (VP-16, 213): Implications for mode of action. Biochemical Pharmacology, 1985, 34, 2036-2040.	4.4	31
47	Mechanism of DNA strand breaks by mitonafide, an imide derivative of 3-nitro-1,8-naphthalic acid. Biochemical Pharmacology, 1985, 34, 3845-3852.	4.4	15
48	Hydroxyl radical production and DNA damage induced by anthracycline-iron complex. FEBS Letters, 1984, 172, 226-230.	2.8	136
49	Irreversible binding of etoposide (VP-16-213) to deoxyribonucleic acid and proteins. Biochemical Pharmacology, 1984, 33, 3725-3728.	4.4	31
50	The electrochemical reduction of 1,4-bis-{2-[(2-hydroxyethyl)-amino]ethylamino}-anthracenedione and daunomycin: Biochemical significance in superoxide formation. Chemico-Biological Interactions, 1983, 43, 371-377.	4.0	25
51	Free radical metabolism of VP-16 and inhibition of anthracycline-induced lipid peroxidation. Biochemical Pharmacology, 1983, 32, 3495-3498.	4.4	46
52	Role of one-electron and two-electron reduction products of adriamycin and daunomycin in deoxyribonucleic acid binding. Biochemical Pharmacology, 1981, 30, 2626-2629.	4.4	99
53	Mechanism of action of N2-substituted spin labeled actinomycin D: Binding to nucleic acids and erythroctyte ghost membranes. Chemico-Biological Interactions, 1981, 34, 367-372.	4.0	1
54	Binding of [14C]-adriamycin to cellular macromolecules in vivo. Biochemical Pharmacology, 1980, 29, 1867-1868.	4.4	40

BIRANDRA K SINHA

#	Article	IF	CITATIONS
55	Structural investigations of DNA-histone complexes. A spin label study. Nucleic Acids Research, 1979, 6, 3703-3714.	14.5	2
56	Interaction of antitumor drugs with human erythrocyte ghost membranes and mastocytoma P815: A spin label study. Biochemical and Biophysical Research Communications, 1979, 86, 1051-1057.	2.1	45
57	Synthesis and biological properties of N2-substituted spin-labeled analogs of actinomycin D. Journal of Medicinal Chemistry, 1979, 22, 1051-1055.	6.4	18
58	Synthesis and antitumor properties of bis(quinaldine) derivatives. Journal of Medicinal Chemistry, 1977, 20, 1528-1531.	6.4	19
59	Synthesis and biological properties of some spin-labeled 9-aminoacridines. Journal of Medicinal Chemistry, 1976, 19, 994-998.	6.4	20
60	Acridine spin labels as probes for nucleic acids. Life Sciences, 1975, 17, 1829-1836.	4.3	15