Jason Shearer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1182349/publications.pdf

Version: 2024-02-01

		109321	175258
74	2,969	35	52
papers	citations	h-index	g-index
75	75	75	3132
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Thioester synthesis by a designed nickel enzyme models prebiotic energy conversion. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	4
2	Scaffold-based [Fe]-hydrogenase model: H ₂ activation initiates Fe(0)-hydride extrusion and non-biomimetic hydride transfer. Chemical Science, 2021, 12, 12838-12846.	7.4	3
3	Access to Metal Centers and Fluxional Hydride Coordination Integral for CO ₂ Insertion into [Fe ₃ (\hat{l} 4-H) ₃] ³⁺ Clusters. Inorganic Chemistry, 2021, 60, 7228-7239.	4.0	4
4	Dinitrogen Insertion and Cleavage by a Metal–Metal Bonded Tricobalt(I) Cluster. Journal of the American Chemical Society, 2021, 143, 5649-5653.	13.7	11
5	Controlled Protonation of [2Fe–2S] Leading to MitoNEET Analogues and Concurrent Cluster Modification. Inorganic Chemistry, 2021, 60, 16074-16078.	4.0	2
6	The Oxo-Wall Remains Intact: A Tetrahedrally Distorted Co(IV)–Oxo Complex. Journal of the American Chemical Society, 2021, 143, 16943-16959.	13.7	12
7	Structure and Unprecedented Reactivity of a Mononuclear Nonheme Cobalt(III) Iodosylbenzene Complex. Angewandte Chemie, 2020, 132, 13683-13687.	2.0	2
8	Structure and Unprecedented Reactivity of a Mononuclear Nonheme Cobalt(III) Iodosylbenzene Complex. Angewandte Chemie - International Edition, 2020, 59, 13581-13585.	13.8	19
9	pH Dependent Reversible Formation of a Binuclear Ni2 Metal-Center within a Peptide Scaffold. Inorganics, 2019, 7, 90.	2.7	3
10	Reduction of CO ₂ by a masked two-coordinate cobalt(<scp>i</scp>) complex and characterization of a proposed oxodicobalt(<scp>ii</scp>) intermediate. Chemical Science, 2019, 10, 918-929.	7.4	44
11	A Biochemical Nickel(I) State Supports Nucleophilic Alkyl Addition: A Roadmap for Methyl Reactivity in Acetyl Coenzyme A Synthase. Inorganic Chemistry, 2019, 58, 8969-8982.	4.0	21
12	Chalcogen Impact on Covalency within Molecular [Cu ₃ $(\hat{l}_4$ ₃ -E)] ³⁺ Clusters (E = O, S, Se): A Synthetic, Spectroscopic, and Computational Study. Inorganic Chemistry, 2018, 57, 11382-11392.	4.0	9
13	Interactions of Metal-Based and Ligand-Based Electronic Spins in Neutral Tripyrrindione π Dimers. Inorganic Chemistry, 2017, 56, 6755-6762.	4.0	29
14	Synthesis and reactivity of a mononuclear non-haem cobalt(IV)-oxo complex. Nature Communications, 2017, 8, 14839.	12.8	132
15	Sequence proximity between Cu(II) and Cu(I) binding sites of human copper transporter 1 model peptides defines reactivity with ascorbate and O2. Journal of Inorganic Biochemistry, 2016, 158, 70-76.	3.5	35
16	A [3Fe–3S]3+ cluster with exclusively μ-sulfide donors. Chemical Communications, 2016, 52, 1174-1177.	4.1	30
17	An Air―and Waterâ€Tolerant Zinc Hydride Cluster That Reacts Selectively With CO ₂ . Angewandte Chemie - International Edition, 2015, 54, 7047-7050.	13.8	38
18	Tripyrrindione as a Redoxâ€Active Ligand: Palladium(II) Coordination in Three Redox States. Angewandte Chemie - International Edition, 2015, 54, 14894-14897.	13.8	40

#	Article	IF	Citations
19	Tripyrrindione as a Redoxâ€Active Ligand: Palladium(II) Coordination in Three Redox States. Angewandte Chemie, 2015, 127, 15107-15110.	2.0	13
20	Subtle Modulation of Cu ₄ X ₄ L ₂ Phosphine Cluster Cores Leads to Changes in Luminescence. Inorganic Chemistry, 2015, 54, 6245-6256.	4.0	51
21	A Nickel Phosphine Complex as a Fast and Efficient Hydrogen Production Catalyst. Journal of the American Chemical Society, 2015, 137, 1109-1115.	13.7	137
22	Adiabaticity of the Proton-Coupled Electron-Transfer Step in the Reduction of Superoxide Effected by Nickel-Containing Superoxide Dismutase Metallopeptide-Based Mimics. Journal of Physical Chemistry B, 2015, 119, 5453-5461.	2.6	5
23	Model Peptide Studies Reveal a Mixed Histidine-Methionine Cu(I) Binding Site at the N-Terminus of Human Copper Transporter 1. Inorganic Chemistry, 2015, 54, 8544-8551.	4.0	42
24	A Redox-Active, Compact Molecule for Cross-Linking Amyloidogenic Peptides into Nontoxic, Off-Pathway Aggregates: In Vitro and In Vivo Efficacy and Molecular Mechanisms. Journal of the American Chemical Society, 2015, 137, 14785-14797.	13.7	65
25	Cysteinate Protonation and Water Hydrogen Bonding at the Active-Site of a Nickel Superoxide Dismutase Metallopeptide-Based Mimic: Implications for the Mechanism of Superoxide Reduction. Journal of the American Chemical Society, 2014, 136, 16009-16022.	13.7	22
26	Isolation of a (Dinitrogen)Tricopper(I) Complex. Journal of the American Chemical Society, 2014, 136, 13502-13505.	13.7	66
27	Transformation of a Mononitrosyl Iron Complex to a [2Fe-2S] Cluster by a Cysteine Analogue. Journal of the American Chemical Society, 2014, 136, 7229-7232.	13.7	22
28	Insight into the Structure and Mechanism of Nickel-Containing Superoxide Dismutase Derived from Peptide-Based Mimics. Accounts of Chemical Research, 2014, 47, 2332-2341.	15.6	59
29	Crystallographic and Computational Studies of Luminescent, Binuclear Gold(I) Complexes, Au ^l ₂ (Ph ₂ P(CH ₂) _{<i>n</i>} PPh ₂) <s (⟨i⟩n<="" 2013,="" 52,="" 823-831.<="" chemistry,="" inorganic="" i⟩='3â€"6).' td=""><td>ub#2x/sut</td><td>)>I2\$ub>2</td></s>	ub#2x/sut)> I2\$ ub>2
30	Dioxygen and superoxide stability of metallopeptide based mimics of nickel containing superoxide dismutase: The influence of amine/amidate vs. bis-amidate ligation. Journal of Inorganic Biochemistry, 2013, 129, 145-149.	3.5	12
31	Novel Alkoxide Cluster Topologies Featuring Rare Seesaw Geometry at Transition Metal Centers. Chemistry - A European Journal, 2013, 19, 12225-12228.	3.3	31
32	Use of a Metallopeptideâ€Based Mimic Provides Evidence for a Protonâ€Coupled Electronâ€Transfer Mechanism for Superoxide Reduction by Nickelâ€Containing Superoxide Dismutase. Angewandte Chemie - International Edition, 2013, 52, 2569-2572.	13.8	23
33	Characterization and Dioxygen Reactivity of a New Series of Coordinatively Unsaturated Thiolate-Ligated Manganese(II) Complexes. Inorganic Chemistry, 2012, 51, 6633-6644.	4.0	35
34	Influence of Sequential Thiolate Oxidation on a Nitrile Hydratase Mimic Probed by Multiedge X-ray Absorption Spectroscopy. Inorganic Chemistry, 2012, 51, 6032-6045.	4.0	24
35	Modulation of Luminescence by Subtle Anion–Cation and Anionâ⁻Ï€ Interactions in a Trigonal Au ^I ···Cu ^I Complex. Inorganic Chemistry, 2012, 51, 1207-1209.	4.0	39
36	One Octarepeate Expansion to the Human Prion Protein Alters Both the Zn2+and Cu2+Coordination Environments within the Octarepeate Domain. Inorganic Chemistry, 2011, 50, 1173-1175.	4.0	12

#	Article	IF	CITATIONS
37	Phenol Nitration Induced by an {Fe(NO) < sub > 2 < /sub > } < sup > 10 < /sup > Dinitrosyl Iron Complex. Journal of the American Chemical Society, 2011, 133, 1184-1187.	13.7	63
38	Bisamidate and Mixed Amine/Amidate NiN ₂ S ₂ Complexes as Models for Nickel-Containing Acetyl Coenzyme A Synthase and Superoxide Dismutase: An Experimental and Computational Study. Inorganic Chemistry, 2010, 49, 5393-5406.	4.0	64
39	Use of Metallopeptide Based Mimics Demonstrates That the Metalloprotein Nitrile Hydratase Requires Two Oxidized Cysteinates for Catalytic Activity. Inorganic Chemistry, 2010, 49, 9064-9077.	4.0	19
40	Cu K-edge X-ray absorption spectroscopy reveals differential copper coordination within amyloid- \hat{l}^2 oligomers compared to amyloid- \hat{l}^2 monomers. Chemical Communications, 2010, 46, 9137.	4.1	41
41	Metallopeptide Based Mimics with Substituted Histidines Approximate a Key Hydrogen Bonding Network in the Metalloenzyme Nickel Superoxide Dismutase. Inorganic Chemistry, 2009, 48, 10560-10571.	4.0	49
42	Luminescent Copper(I) Halide Butterfly Dimers Coordinated to [Au(CH ₃ imCH ₂ py) ₂]BF ₄ and [Au(CH ₃ imCH ₂ quin) ₂]BF ₄ . Inorganic Chemistry, 2009, 48, 11362-11375.	4.0	40
43	Both Met(109) and Met(112) are utilized for Cu(II) coordination by the amyloidogenic fragment of the human prion protein at physiological pH. Journal of Inorganic Biochemistry, 2008, 102, 2103-2113.	3.5	29
44	The Amyloid-β Peptide of Alzheimer's Disease Binds Cu ^I in a Linear Bis-His Coordination Environment: Insight into a Possible Neuroprotective Mechanism for the Amyloid-β Peptide. Journal of the American Chemical Society, 2008, 130, 17826-17835.	13.7	176
45	Influence of Sequential Guanidinium Methylation on the Energetics of the Guanidinium···Guanine Dimer and Guanidinium···Guanine···Cytosine Trimer: Implications for the Control of Protein···DNA Interactions by Arginine Methyltransferases. Journal of Physical Chemistry B, 2008, 112, 16995-17002.	2.6	3
46	Probing Variable Amine/Amide Ligation in NillN2S2 Complexes Using Sulfur K-Edge and Nickel L-Edge X-ray Absorption Spectroscopies: Implications for the Active Site of Nickel Superoxide Dismutase. Inorganic Chemistry, 2008, 47, 2649-2660.	4.0	45
47	Properties of Square-Pyramidal Alkylâ^'Thiolate Fe ^{III} Complexes, Including an Analogue of the Unmodified Form of Nitrile Hydratase. Inorganic Chemistry, 2008, 47, 11228-11236.	4.0	27
48	The Copper(II) Adduct of the Unstructured Region of the Amyloidogenic Fragment Derived from the Human Prion Protein is Redox-Active at Physiological pH. Inorganic Chemistry, 2007, 46, 710-719.	4.0	50
49	Probing Variable Axial Ligation in Nickel Superoxide Dismutase Utilizing Metallopeptide-Based Models: Insight into the Superoxide Disproportionation Mechanism. Journal of the American Chemical Society, 2007, 129, 14605-14618.	13.7	65
50	Ni K-edge XAS suggests that coordination of Nill to the unstructured amyloidogenic region of the human prion protein produces a Ni2 bis- $\hat{l}\frac{1}{4}$ -hydroxo dimer. Journal of Inorganic Biochemistry, 2007, 101, 370-373.	3.5	10
51	Periodic Trends within a Series of Five-Coordinate Thiolate-Ligated [MII(SMe2N4(tren))]+ (M = Mn, Fe,) Tj ETQq1 2007, 46, 9267-9277.	l 0.78431 4.0	4 rgBT /Ove 39
52	Manganese Complexes of 1,3,5-Triaza-7-phosphaadamantane (PTA):Â The First Nitrogen-Bound Transition-Metal Complex of PTA. Inorganic Chemistry, 2006, 45, 3481-3483.	4.0	50
53	The Influence of Amine/Amide versus Bisamide Coordination in Nickel Superoxide Dismutase. Inorganic Chemistry, 2006, 45, 10552-10566.	4.0	49
54	[Me4N](Nill(BEAAM)):Â A Synthetic Model for Nickel Superoxide Dismutase That Contains Ni in a Mixed Amine/Amide Coordination Environment. Inorganic Chemistry, 2006, 45, 9637-9639.	4.0	57

#	Article	IF	CITATIONS
55	A Nickel Superoxide Dismutase Maquette That Reproduces the Spectroscopic and Functional Properties of the Metalloenzyme. Inorganic Chemistry, 2006, 45, 2358-2360.	4.0	78
56	Synthesis, characterization, and crystal structure of a quadruply bonded dimolybdenum(II) complex containing the water-soluble phosphine 1,3,5-triaza-7-phosphaadamantane (PTA). Inorganica Chimica Acta, 2006, 359, 283-288.	2.4	16
57	Substrate Oxidation by Copperâ 'Dioxygen Adducts: Â Mechanistic Considerations. Journal of the American Chemical Society, 2005, 127, 5469-5483.	13.7	95
58	Steric and Electronic Control over the Reactivity of a Thiolate-Ligated Fe(II) Complex with Dioxygen and Superoxide: Reversible μ-Oxo Dimer Formation. Inorganic Chemistry, 2004, 43, 7682-7690.	4.0	41
59	Heme/Cu/O2Reactivity:Â Change in Felllâ''(O22-)â''CullUnit Peroxo Binding Geometry Effected by Tridentate Copper Chelation. Journal of the American Chemical Society, 2004, 126, 12716-12717.	13.7	36
60	Understanding the mechanism of superoxide reduction by the non-heme iron enzyme superoxide reductase (SOR) using a synthetic analogue approach. Journal of Inorganic Biochemistry, 2003, 96, 20.	3.5	0
61	Tuning Copperâ^'Dioxygen Reactivity and Exogenous Substrate Oxidations via Alterations in Ligand Electronics. Journal of the American Chemical Society, 2003, 125, 634-635.	13.7	93
62	Distinguishing Rate-Limiting Electron versus H-Atom Transfers in Cu2(O2)-Mediated OxidativeN-Dealkylations:Â Application of Inter- versus Intramolecular Kinetic Isotope Effects. Journal of the American Chemical Society, 2003, 125, 12670-12671.	13.7	64
63	How does cyanide inhibit superoxide reductase? Insight from synthetic FellIN4S model complexes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3671-3676.	7.1	36
64	The First Example of a Nitrile Hydratase Model Complex that Reversibly Binds Nitriles. Journal of the American Chemical Society, 2002, 124, 11417-11428.	13.7	51
65	Synthetic Models for the Cysteinate-Ligated Non-Heme Iron Enzyme Superoxide Reductase:  Observation and Structural Characterization by XAS of an FelllⰠOOH Intermediate. Journal of the American Chemical Society, 2002, 124, 11709-11717.	13.7	89
66	Enhancing Reactivity via Structural Distortion. Inorganic Chemistry, 2002, 41, 3128-3136.	4.0	26
67	Preparation and properties of [Nill(BEES)(Cl)](BPh4): a Nill complex in a mixed nitrogen/thioether coordination environment. Inorganica Chimica Acta, 2002, 336, 61-64.	2.4	1
68	Modeling the Reactivity of Superoxide Reducing Metalloenzymes with a Nitrogen and Sulfur Coordinated Iron Complex. Inorganic Chemistry, 2001, 40, 5483-5484.	4.0	37
69	Why Is There an "Inert―Metal Center in the Active Site of Nitrile Hydratase? Reactivity and Ligand Dissociation from a Five-Coordinate Co(III) Nitrile Hydratase Model. Journal of the American Chemical Society, 2001, 123, 463-468.	13.7	66
70	How Do Oxidized Thiolate Ligands Affect the Electronic and Reactivity Properties of a Nitrile Hydratase Model Compound?. Journal of the American Chemical Society, 2000, 122, 8299-8300.	13.7	65
71	A Co(III) Complex in a Mixed Sulfur/Nitrogen Ligand Environment:Â Modeling the Substrate- and Product-Bound Forms of the Metalloenzyme Thiocyanate Hydrolase. Inorganic Chemistry, 2000, 39, 4998-4999.	4.0	15
72	A Ni(Salen)-Biotin Conjugate for Rapid Isolation of Accessible DNA. Journal of the American Chemical Society, 2000, 122, 9046-9047.	13.7	24

#	Article	lF	CITATIONS
73	Alkylation of Nucleic Acids by a Model Quinone Methide. Journal of the American Chemical Society, 1999, 121, 6773-6779.	13.7	139
74	Dinitrogen Coordination to a Highâ€Spin Diiron(I/II) Species. Angewandte Chemie, 0, , .	2.0	0