
Martijn Meuwissen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11820382/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physiological Assessment of Coronary Artery Disease in the Cardiac Catheterization Laboratory. Circulation, 2006, 114, 1321-1341.	1.6	441
2	Coronary Angiography after Cardiac Arrest without ST-Segment Elevation. New England Journal of Medicine, 2019, 380, 1397-1407.	27.0	373
3	Physiological Basis and Long-Term Clinical Outcome of Discordance Between Fractional Flow Reserve and Coronary Flow Velocity Reserve in Coronary Stenoses of Intermediate Severity. Circulation: Cardiovascular Interventions, 2014, 7, 301-311.	3.9	322
4	Percutaneous Intervention for ConcurrentÂChronic Total Occlusions inÂPatients WithÂSTEMI. Journal of the American College of Cardiology, 2016, 68, 1622-1632.	2.8	300
5	Role of Variability in Microvascular Resistance on Fractional Flow Reserve and Coronary Blood Flow Velocity Reserve in Intermediate Coronary Lesions. Circulation, 2001, 103, 184-187.	1.6	243
6	Prospective Assessment of the DiagnosticÂAccuracy of Instantaneous Wave-Free Ratio to Assess Coronary Stenosis Relevance. JACC: Cardiovascular Interventions, 2015, 8, 824-833.	2.9	172
7	Single-Wire Pressure and Flow Velocity Measurement to Quantify Coronary Stenosis Hemodynamics and Effects of Percutaneous Interventions. Circulation, 2004, 109, 756-762.	1.6	166
8	Hyperemic Stenosis Resistance Index for Evaluation of Functional Coronary Lesion Severity. Circulation, 2002, 106, 441-446.	1.6	163
9	Baseline Instantaneous Wave-Free Ratio as a Pressure-Only Estimation of Underlying Coronary Flow Reserve. Circulation: Cardiovascular Interventions, 2014, 7, 492-502.	3.9	152
10	Coronary pressure and flow relationships in humans: phasic analysis of normal and pathological vessels and the implications for stenosis assessment: a report from the Iberian–Dutch–English (IDEAL) collaborators. European Heart Journal, 2015, 37, 2069-2080.	2.2	129
11	Fractional flow reserve as a surrogate for inducible myocardial ischaemia. Nature Reviews Cardiology, 2013, 10, 439-452.	13.7	127
12	Usefulness of fractional flow reserve for risk stratification of patients with multivessel coronary artery disease and an intermediate stenosis. American Journal of Cardiology, 2002, 89, 377-380.	1.6	112
13	Fractional flow reserve, absolute and relative coronary blood flow velocity reserve in relation to the results of technetium-99m sestambi single-photon emission computed tomography in patients with two-vessel coronary artery disease. Journal of the American College of Cardiology, 2001, 37, 1316-1322.	2.8	111
14	Influence of Percutaneous Coronary Intervention on Coronary Microvascular Resistance Index. Circulation, 2005, 111, 76-82.	1.6	111
15	Safety of the Deferral of Coronary Revascularization on the Basis of Instantaneous Wave-Free Ratio and Fractional Flow Reserve Measurements in Stable Coronary Artery Disease and Acute Coronary Syndromes. JACC: Cardiovascular Interventions, 2018, 11, 1437-1449.	2.9	111
16	Association between coronary lesion severity and distal microvascular resistance in patients with coronary artery disease. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H2194-H2200.	3.2	107
17	Effect of Multivessel Coronary Disease With or Without Concurrent Chronic Total Occlusion on One-Year Mortality in Patients Treated With Primary Percutaneous Coronary Intervention for Cardiogenic Shock. American Journal of Cardiology, 2010, 105, 955-959.	1.6	105
18	Fractional Flow Reserve/InstantaneousÂWave-Free Ratio Discordance in Angiographically Intermediate CoronaryÂStenoses. JACC: Cardiovascular Interventions, 2017, 10, 2514-2524.	2.9	104

#	Article	IF	CITATIONS
19	Impact of hyperaemic microvascular resistance on fractional flow reserve measurements in patients with stable coronary artery disease: insights from combined stenosis and microvascular resistance assessment. Heart, 2014, 100, 951-959.	2.9	102
20	Short- and Long-Term recovery of left ventricular function predicted at the time of primary percutaneous coronary intervention in anterior myocardial infarction. Journal of the American College of Cardiology, 2004, 43, 534-541.	2.8	91
21	Multiple Biomarkers at Admission Significantly Improve the Prediction of Mortality in Patients Undergoing Primary Percutaneous Coronary Intervention for Acute ST-Segment Elevation Myocardial Infarction. Journal of the American College of Cardiology, 2011, 57, 29-36.	2.8	91
22	Diagnostic Accuracy of Combined Intracoronary Pressure and Flow Velocity Information During Baseline Conditions. Circulation: Cardiovascular Interventions, 2012, 5, 508-514.	3.9	91
23	Prognostic value of coronary blood flow velocity and myocardial perfusion in intermediate coronary narrowings and multivessel disease. Journal of the American College of Cardiology, 2002, 39, 852-858.	2.8	88
24	A Randomized Comparison of Paclitaxel-Eluting Balloon Versus Everolimus-Eluting Stent for the TreatmentÂof Any In-Stent Restenosis. JACC: Cardiovascular Interventions, 2018, 11, 275-283.	2.9	88
25	Diagnostic and Prognostic Implications ofÂCoronary Flow Capacity. JACC: Cardiovascular Interventions, 2015, 8, 1670-1680.	2.9	87
26	The prognostic value of combined intracoronary pressure and blood flow velocity measurements after deferral of percutaneous coronary intervention. Catheterization and Cardiovascular Interventions, 2008, 71, 291-297.	1.7	78
27	Impact of Coronary Microvascular Function on Long-term Cardiac Mortality in Patients With Acute ST-Segment–Elevation Myocardial Infarction. Circulation: Cardiovascular Interventions, 2013, 6, 207-215.	3.9	77
28	Influence of hemodynamic conditions on fractional flow reserve: parametric analysis of underlying model. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H1462-H1470.	3.2	71
29	Impaired Coronary Autoregulation Is Associated With Long-term Fatal Events in Patients With Stable Coronary Artery Disease. Circulation: Cardiovascular Interventions, 2013, 6, 329-335.	3.9	65
30	Head-to-head comparison of basal stenosis resistance index, instantaneous wave-free ratio, and fractional flow reserve: diagnostic accuracy for stenosis-specific myocardial ischaemia. EuroIntervention, 2015, 11, 914-925.	3.2	62
31	Early Detection and Treatment of the Vulnerable Coronary Plaque. Circulation: Cardiovascular Imaging, 2017, 10, .	2.6	60
32	Long-term impact of chronic total occlusion recanalisation in patients with ST-elevation myocardial infarction. Heart, 2018, 104, 1432-1438.	2.9	55
33	Prevalence and impact of a chronic total occlusion in a non-infarct-related artery on long-term mortality in diabetic patients with ST elevation myocardial infarction. Heart, 2010, 96, 1968-1972.	2.9	52
34	Plaque inflammation in restenotic coronary lesions of patients with stable or unstable angina. Journal of the American College of Cardiology, 2000, 35, 963-967.	2.8	51
35	Change in Coronary Blood Flow After Percutaneous Coronary Intervention in Relation to Baseline Lesion Physiology. Circulation: Cardiovascular Interventions, 2015, 8, e001715.	3.9	38
36	Timing of revascularization in patients with transient ST-segment elevation myocardial infarction: a randomized clinical trial. European Heart Journal, 2019, 40, 283-291.	2.2	38

#	Article	IF	CITATIONS
37	Association between complex coronary artery stenosis and unstable angina and the extent of plaque inflammation. American Journal of Medicine, 2003, 114, 521-527.	1.5	31
38	Eosinophilic infiltration in restenotic tissue following coronary stent implantation. Atherosclerosis, 2006, 184, 157-162.	0.8	31
39	Recurrent unstable angina after directional coronary atherectomy is related to the extent of initial coronary plaque inflammation. Journal of the American College of Cardiology, 2001, 37, 1271-1276.	2.8	28
40	Coronary angiography after cardiac arrest: Rationale and design of the COACT trial. American Heart Journal, 2016, 180, 39-45.	2.7	28
41	Contribution of Age-Related Microvascular Dysfunction to AbnormalÂCoronary. JACC: Cardiovascular Interventions, 2020, 13, 20-29.	2.9	28
42	Relationship between FFR, CFR and coronary microvascular resistance – Practical implications for FFR-guided percutaneous coronary intervention. PLoS ONE, 2019, 14, e0208612.	2.5	26
43	Combining Baseline Distal-to-Aortic Pressure Ratio and Fractional Flow Reserve in the Assessment of CoronaryAStenosis Severity. JACC: Cardiovascular Interventions, 2015, 8, 1681-1691.	2.9	25
44	Role of fractional and coronary flow reserve in clinical decision making in intermediate coronary lesions. Interventional Cardiology, 2009, 1, 237-255.	0.0	24
45	Impact of Routine Invasive Physiology atÂTime of Angiography in Patients WithÂMultivessel Coronary Artery DiseaseÂon Reclassification of Revascularization Strategy. JACC: Cardiovascular Interventions, 2018, 11, 354-365.	2.9	24
46	Rationale of combined intracoronary pressure and flow velocity measurements. Clinical Research in Cardiology, 2002, 91, 108-112.	1.1	20
47	Intracoronary pressure and flow velocity for hemodynamic evaluation of coronary stenoses. Expert Review of Cardiovascular Therapy, 2003, 1, 471-479.	1.5	19
48	Effect of simultaneous intracoronary guidewires on the predictive accuracy of functional parameters of coronary lesion severity. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2349-H2355.	3.2	19
49	Clinical Relevance of Ischemia with Nonobstructive Coronary Arteries According to Coronary Microvascular Dysfunction. Journal of the American Heart Association, 2022, 11, e025171.	3.7	19
50	Fractional flow reserve and beyond. Heart, 2013, 99, 1699-1705.	2.9	17
51	1-Year Outcomes of Delayed Versus Immediate Intervention in Patients With Transient ST-Segment Elevation Myocardial Infarction. JACC: Cardiovascular Interventions, 2019, 12, 2272-2282.	2.9	16
52	The Doppler flow wire in acute myocardial infarction. Heart, 2010, 96, 631-635.	2.9	14
53	Pressure-derived estimations of coronary flow reserve are inferior to flow-derived coronary flow reserve as diagnostic and risk stratification tools. International Journal of Cardiology, 2019, 279, 6-11.	1.7	10
54	Combined Assessment of FFR and CFRÂfor Decision Making in CoronaryÂRevascularization. JACC: Cardiovascular Interventions, 2022, 15, 1047-1056.	2.9	10

MARTIJN MEUWISSEN

#	Article	IF	CITATIONS
55	Stent Inflammation. Circulation, 2002, 106, 1176-1177.	1.6	9
56	The effect of immediate coronary angiography after cardiac arrest without ST-segment elevation on left ventricular function. A sub-study of the COACT randomised trial. Resuscitation, 2021, 164, 93-100.	3.0	9
57	Optical coherence tomography and coronary revascularization: from indication to procedural optimization. Trends in Cardiovascular Medicine, 2023, 33, 92-106.	4.9	9
58	Coronary Flow Capacity to Identify Stenosis Associated With Coronary Flow Improvement After Revascularization: A Combined Analysis From DEFINE FLOW and IDEAL. Journal of the American Heart Association, 2020, 9, e016130.	3.7	8
59	Impact of clinical and haemodynamic factors on coronary flow reserve and invasive coronary flow capacity in non-obstructed coronary arteries: a patient-level pooled analysis of the DEBATE and ILIAS studies. EuroIntervention, 2021, 16, e1503-e1510.	3.2	8
60	Value of C-reactive protein in patients with stable angina pectoris, coronary narrowing (30% to 70%), and normal fractional flow reserve. American Journal of Cardiology, 2003, 92, 702-705.	1.6	6
61	Fractional flow reserve-guided percutaneous coronary intervention: where to after FAME 2?. Vascular Health and Risk Management, 2015, 11, 613.	2.3	6
62	Objective Identification of Intermediate Lesions Inducing Myocardial Ischemia Using Sequential Intracoronary Pressure and Flow Measurements. Journal of the American Heart Association, 2020, 9, e015559.	3.7	5
63	Sex differences in patients with out-of-hospital cardiac arrest without ST-segment elevation: A COACT trial substudy. Resuscitation, 2021, 158, 14-22.	3.0	5
64	Identification of anatomic risk factors for acute coronary events by optical coherence tomography in patients with myocardial infarction and residual nonflow limiting lesions: rationale and design of the PECTUS-obs study. BMJ Open, 2021, 11, e048994.	1.9	5
65	Adequate patient selection for coronary revascularization: an overview of current methods used in daily clinical practice. International Journal of Cardiovascular Imaging, 2002, 18, 5-15.	0.6	4
66	Paclitaxelâ€eluting balloon versus everolimusâ€eluting stent in patients with diabetes mellitus and inâ€stent restenosis: Insights from the randomized DARE trial. Catheterization and Cardiovascular Interventions, 2019, 93, 216-221.	1.7	4
67	Transient ST-elevation myocardial infarction versus persistent ST-elevation myocardial infarction. An appraisal of patient characteristics and functional outcome. International Journal of Cardiology, 2021, 336, 22-28.	1.7	4
68	Neovascularity related to mural thrombus in endomyocardial fibrosis. International Journal of Cardiovascular Imaging, 1999, 15, 205-207.	0.6	3
69	Comprehensive physiological evaluation of epicardial and microvascular coronary domains using vascular conductance and zero flow pressure. EuroIntervention, 2019, 14, e1593-e1600.	3.2	3
70	Differential Prognostic Value of Revascularization for Coronary Stenosis With Intermediate FFR by Coronary FlowAReserve. JACC: Cardiovascular Interventions, 2022, 15, 1033-1043.	2.9	3
71	Diastolic-systolic velocity ratio to detect coronary stenoses under physiological resting conditions: a mechanistic study. Open Heart, 2019, 6, e000968.	2.3	2
72	Time course of coronary flow capacity impairment in ST-segment elevation myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2020, , .	1.0	2

#	Article	IF	CITATIONS
73	Respirationâ€related variations in Pd/Pa ratio and fractional flow reserve in resting conditions and during intravenous adenosine administration. Catheterization and Cardiovascular Interventions, 2021, , .	1.7	2
74	Ischaemic electrocardiogram patterns and its association with survival in out-of-hospital cardiac arrest patients without ST-segment elevation myocardial infarction: a COACT trials' post-hoc subgroup analysis. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 535-543.	1.0	2
75	Phasic flow patterns of right versus left coronary arteries in patients undergoing clinical physiological assessment. EuroIntervention, 2022, 17, 1260-1270.	3.2	1
76	Differential Impact of Coronary Revascularization on Long-Term Clinical Outcome According to Coronary Flow Characteristics: Analysis of the International ILIAS Registry. Circulation: Cardiovascular Interventions, 2022, 15, .	3.9	1
77	Response to Michiels et al and Sen et al Regarding Article, $\hat{a} \in \infty$ Diagnostic Accuracy of Combined Intracoronary Pressure and Flow Velocity Information During Baseline Conditions: Adenosine-Free Assessment of Functional Coronary Lesion Severity $\hat{a} \in $ Circulation: Cardiovascular Interventions, 2012, 5	3.9	0
78	Data on sex differences in one-year outcomes of out-of-hospital cardiac arrest patients without ST-segment elevation. Data in Brief, 2020, 33, 106521.	1.0	0
79	Cost Analysis From a Randomized Comparison of Immediate Versus Delayed Angiography After Cardiac Arrest. Journal of the American Heart Association, 2022, 11, e022238.	3.7	0