Yongju Bang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11819759/publications.pdf

Version: 2024-02-01

	394421	526287
975	19	27
citations	h-index	g-index
27	27	1268
21	21	1200
docs citations	times ranked	citing authors
	citations 27	975 19 citations h-index 27 27

#	Article	IF	CITATIONS
1	Hydrogen production by steam reforming of ethanol over mesoporous Cu–Ni–Al 2 O 3 –ZrO 2 xerogel catalysts. International Journal of Hydrogen Energy, 2016, 41, 2554-2563.	7.1	31
2	Hydrogen production by steam reforming of ethanol over dual-templated Ni–Al2O3 catalyst. Catalysis Today, 2016, 265, 103-110.	4.4	18
3	Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous Ni/Al2O3 catalyst prepared by an EDTA-assisted impregnation method. Applied Catalysis B: Environmental, 2016, 180, 179-188.	20.2	71
4	Synthesis of a dual-templated MgO–Al2O3 adsorbent using block copolymer and ionic liquid for CO2 capture. Chemical Engineering Journal, 2015, 270, 411-417.	12.7	21
5	Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous nickel–iron–alumina catalyst. International Journal of Hydrogen Energy, 2015, 40, 5869-5877.	7.1	18
6	Hydrogen production by tri-reforming of methane over nickel–alumina aerogel catalyst. Journal of Molecular Catalysis A, 2015, 410, 74-80.	4.8	45
7	Hydrogenation of succinic acid to 1,4-butanediol over Re–Ru bimetallic catalysts supported on mesoporous carbon. Applied Catalysis A: General, 2015, 490, 153-162.	4.3	85
8	Dehydration of glycerin to acrolein over H 3 PW 12 O 40 heteropolyacid catalyst supported on silica-alumina. Journal of Molecular Catalysis A, 2015, 396, 282-289.	4.8	33
9	Hydrogen production by steam reforming of simulated liquefied natural gas (LNG) over nickel catalyst supported on mesoporous phosphorus-modified alumina xerogel. Applied Catalysis B: Environmental, 2014, 148-149, 269-280.	20.2	50
10	Activated carbon aerogel containing graphene as electrode material for supercapacitor. Materials Research Bulletin, 2014, 50, 240-245.	5.2	50
11	Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous nickel–phosphorus–alumina aerogel catalyst. International Journal of Hydrogen Energy, 2014, 39, 4909-4916.	7.1	16
12	Elevated temperature CO2 capture on nano-structured MgO–Al2O3 aerogel: Effect of Mg/Al molar ratio. Chemical Engineering Journal, 2014, 242, 357-363.	12.7	87
13	Hydrogen production by steam reforming of ethanol over P123-assisted mesoporous Ni–Al2O3–ZrO2 xerogel catalysts. International Journal of Hydrogen Energy, 2014, 39, 10445-10453.	7.1	27
14	Hydrogen production by steam reforming of ethanol over mesoporous Ni–Al2O3–ZrO2 aerogel catalyst. International Journal of Hydrogen Energy, 2013, 38, 15119-15127.	7.1	31
15	Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous alkaline earth metal-promoted nickel-alumina xerogel catalysts. Journal of Molecular Catalysis A, 2013, 380, 28-33.	4.8	12
16	Hydrogen production by steam reforming of ethanol over mesoporous Ni–Al2O3–ZrO2 xerogel catalysts: Effect of nickel content. International Journal of Hydrogen Energy, 2013, 38, 8285-8292.	7.1	40
17	Hydrogen production by steam reforming of ethanol over mesoporous Ni–Al2O3–ZrO2 xerogel catalysts: Effect of Zr/Al molar ratio. International Journal of Hydrogen Energy, 2013, 38, 1376-1383.	7.1	38
18	Hydrogen production by steam reforming of liquefied natural gas (LNG) over trimethylbenzene-assisted ordered mesoporous nickel–alumina catalyst. International Journal of Hydrogen Energy, 2013, 38, 8751-8758.	7.1	27

#	Article	IF	CITATIONS
19	Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous nickel–aluminaÂxerogel catalysts prepared by a single-step carbon-templating sol–gel method. International Journal of Hydrogen Energy, 2012, 37, 11208-11217.	7.1	18
20	Hydrogen production by steam reforming of liquefied natural gas (LNG) over ordered mesoporous nickel–alumina catalyst. International Journal of Hydrogen Energy, 2012, 37, 17967-17977.	7.1	43
21	Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous Ni-Al2O3 aerogel catalyst prepared by a single-step epoxide-driven sol-gel method. International Journal of Hydrogen Energy, 2012, 37, 1436-1443.	7.1	27
22	Preparation, characterization, and oxidation catalysis of H3PMo12O40 heteropolyacid catalyst immobilized on carbon aerogel. Korean Journal of Chemical Engineering, 2011, 28, 79-83.	2.7	8
23	Hydrogen production by steam reforming of simulated liquefied natural gas (LNG) over mesoporous nickel–M–alumina (M=Ni, Ce, La, Y, Cs, Fe, Co, and Mg) aerogel catalysts. International Journal of Hydrogen Energy, 2011, 36, 3505-3514.	7.1	21
24	Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous Ni–La–Al2O3 aerogel catalysts: Effect of La content. International Journal of Hydrogen Energy, 2011, 36, 8307-8315.	7.1	62
25	Effect of Ni/Al atomic ratio of mesoporous Ni–Al2O3 aerogel catalysts on their catalytic activity for hydrogen production by steam reforming of liquefied natural gas (LNG). International Journal of Hydrogen Energy, 2010, 35, 12174-12181.	7.1	26
26	Hydrogen production by auto-thermal reforming of ethanol over nickel catalysts supported on metal oxides: Effect of support acidity. Applied Catalysis B: Environmental, 2010, 98, 57-64.	20.2	60
27	Preparation and Oxidation Catalysis of H5PMo10V2O40 Catalyst Immobilized on Nitrogen-Containing Spherical Carbon. Catalysis Letters, 2009, 132, 377-382.	2.6	10