Michael B Butterworth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11816125/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acute ENaC Stimulation by cAMP in a Kidney Cell Line is Mediated by Exocytic Insertion from a Recycling Channel Pool. Journal of General Physiology, 2005, 125, 81-101.	1.9	152
2	Regulation of the epithelial sodium channel (ENaC) by membrane trafficking. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 1166-1177.	3.8	125
3	Rab11b Regulates the Apical Recycling of the Cystic Fibrosis Transmembrane Conductance Regulator in Polarized Intestinal Epithelial Cells. Molecular Biology of the Cell, 2009, 20, 2337-2350.	2.1	114
4	Regulation of the epithelial sodium channel by membrane trafficking. American Journal of Physiology - Renal Physiology, 2009, 296, F10-F24.	2.7	110
5	The Deubiquitinating Enzyme UCH-L3 Regulates the Apical Membrane Recycling of the Epithelial Sodium Channel. Journal of Biological Chemistry, 2007, 282, 37885-37893.	3.4	104
6	Clathrin-mediated Endocytosis of the Epithelial Sodium Channel. Journal of Biological Chemistry, 2006, 281, 14129-14135.	3.4	103
7	Airway Surface Liquid Volume Regulates ENaC by Altering the Serine Protease-Protease Inhibitor Balance. Journal of Biological Chemistry, 2006, 281, 27942-27949.	3.4	99
8	Rab11b regulates the trafficking and recycling of the epithelial sodium channel (ENaC). American Journal of Physiology - Renal Physiology, 2012, 302, F581-F590.	2.7	76
9	Acute Regulation of the Epithelial Sodium Channel in Airway Epithelia by Proteases and Trafficking. American Journal of Respiratory Cell and Molecular Biology, 2010, 43, 712-719.	2.9	73
10	14-3-3 Isoforms Are Induced by Aldosterone and Participate in Its Regulation of Epithelial Sodium Channels. Journal of Biological Chemistry, 2006, 281, 16323-16332.	3.4	67
11	The Epithelial Sodium Channel (ENaC) Traffics to Apical Membrane in Lipid Rafts in Mouse Cortical Collecting Duct Cells. Journal of Biological Chemistry, 2007, 282, 37402-37411.	3.4	65
12	Activation of the Epithelial Sodium Channel (ENaC) by the Alkaline Protease from Pseudomonas aeruginosa. Journal of Biological Chemistry, 2012, 287, 32556-32565.	3.4	58
13	Alternatively spliced proline-rich cassettes link WNK1 to aldosterone action. Journal of Clinical Investigation, 2015, 125, 3433-3448.	8.2	58
14	An Obligatory Heterodimer of 14-3-3β and 14-3-3Ϊμ Is Required for Aldosterone Regulation of the Epithelial Sodium Channel. Journal of Biological Chemistry, 2008, 283, 27418-27425.	3.4	56
15	AS160 Modulates Aldosterone-stimulated Epithelial Sodium Channel Forward Trafficking. Molecular Biology of the Cell, 2010, 21, 2024-2033.	2.1	50
16	cAMP-sensitive endocytic trafficking in A6 epithelia. American Journal of Physiology - Cell Physiology, 2001, 280, C752-C762.	4.6	49
17	Regulation of Epithelial Na+ Transport by Soluble Adenylyl Cyclase in Kidney Collecting Duct Cells. Journal of Biological Chemistry, 2009, 284, 5774-5783.	3.4	47
18	Aldosterone Regulates MicroRNAs in the Cortical Collecting Duct to Alter Sodium Transport. Journal of the American Society of Nephrology: JASN, 2014, 25, 2445-2457.	6.1	42

#	Article	IF	CITATIONS
19	Ankyrin G Expression Regulates Apical Delivery of the Epithelial Sodium Channel (ENaC). Journal of Biological Chemistry, 2017, 292, 375-385.	3.4	34
20	Modulation of the Epithelial Sodium Channel (ENaC) by Bacterial Metalloproteases and Protease Inhibitors. PLoS ONE, 2014, 9, e100313.	2.5	26
21	Anterograde Trafficking of KCa3.1 in Polarized Epithelia Is Rab1- and Rab8-Dependent and Recycling Endosome-Independent. PLoS ONE, 2014, 9, e92013.	2.5	23
22	A MicroRNA Cluster miRâ€⊋3–24–27 Is Upregulated by Aldosterone in the Distal Kidney Nephron Where it Alters Sodium Transport. Journal of Cellular Physiology, 2017, 232, 1306-1317.	4.1	22
23	The Epithelial Sodium Channel (ENaC) Establishes a Trafficking Vesicle Pool Responsible for Its Regulation. PLoS ONE, 2012, 7, e46593.	2.5	22
24	Some Assembly Required: Putting the Epithelial Sodium Channel Together. Journal of Biological Chemistry, 2008, 283, 35305-35309.	3.4	18
25	MicroRNAs and the regulation of aldosterone signaling in the kidney. American Journal of Physiology - Cell Physiology, 2015, 308, C521-C527.	4.6	17
26	Specific Palmitoyltransferases Associate with and Activate the Epithelial Sodium Channel. Journal of Biological Chemistry, 2017, 292, 4152-4163.	3.4	17
27	Role of microRNAs in aldosterone signaling. Current Opinion in Nephrology and Hypertension, 2018, 27, 390-394.	2.0	16
28	Expression of a Diverse Array of Ca2+-Activated K+ Channels (SK1/3, IK1, BK) that Functionally Couple to the Mechanosensitive TRPV4 Channel in the Collecting Duct System of Kidney. PLoS ONE, 2016, 11, e0155006.	2.5	12
29	Loss of <i>miR-17~92</i> results in dysregulation of <i>Cftr</i> in nephron progenitors. American Journal of Physiology - Renal Physiology, 2019, 316, F993-F1005.	2.7	10
30	Regulation of Aldosterone Signaling by MicroRNAs. Vitamins and Hormones, 2019, 109, 69-103.	1.7	9
31	Cytochemical localization of adenylate cyclase in cultured renal epithelial (A6) cells. Microscopy Research and Technique, 1998, 40, 455-462.	2.2	8
32	Non-coding RNAs and the mineralocorticoid receptor in the kidney. Molecular and Cellular Endocrinology, 2021, 521, 111115.	3.2	7
33	The Lhx1-Ldb1 complex interacts with Furry to regulate microRNA expression during pronephric kidney development. Scientific Reports, 2018, 8, 16029.	3.3	6
34	USP10: the nexus between nexin and vasopressin. American Journal of Physiology - Renal Physiology, 2008, 295, F888-F888.	2.7	2
35	Histone deacetylase inhibitors (HDACi) increase expression of KCa2.3 (SK3) in primary microvascular endothelial cells. American Journal of Physiology - Cell Physiology, 2022, 322, C338-C353.	4.6	2
36	Basolateral trafficking of KCa3.1 in a polarized epithelium. FASEB Journal, 2011, 25, 860.13.	0.5	1

#	Article	IF	CITATIONS
37	The tale of two (distal nephron) cell types. American Journal of Physiology - Renal Physiology, 2018, 314, F930-F931.	2.7	0
38	Lipid rafts mediate constitutive apical delivery of the epithelial sodium channel (ENaC). FASEB Journal, 2007, 21, A954.	0.5	0
39	The Rabâ€GAP, AS160, participates in the regulation of apical membrane epithelial sodium channel (ENaC) density and recycling. FASEB Journal, 2010, 24, 1024.1.	0.5	0
40	Myosin 5 is involved in cAMPâ€induced ENaC trafficking in a mCCD cell line. FASEB Journal, 2011, 25, 1041.40.	0.5	0
41	Active ENaC channels are selectively recycled. FASEB Journal, 2013, 27, 911.10.	0.5	0
42	MicroRNA Regulation of Channels and Transporters. Physiology in Health and Disease, 2020, , 543-563.	0.3	0