
Jinfeng Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11815399/publications.pdf Version: 2024-02-01

INFENC HAN

#	Article	IF	CITATIONS
1	A New Polystyrene–Poly(vinylpyridinium) Ionic Copolymer Dopant for nâ€Type Allâ€Polymer Thermoelectrics with High and Stable Conductivity Relative to the Seebeck Coefficient giving High Power Factor. Advanced Materials, 2022, 34, e2201062.	21.0	13
2	A Dichlorinated Dithienylethene-Diketopyrrolopyrrole-Based Copolymer with Pronounced $P\hat{a} \in \mathbb{N}$ Crossover: Evidence for Anionic Seebeck Contribution. , 2022, 4, 1139-1145.		4
3	High-Performance All-Polymer Photodetectors Enabled by New Random Terpolymer Acceptor with Fine-Tuned Molecular Weight. ACS Applied Materials & Interfaces, 2022, 14, 26978-26987.	8.0	9
4	Dichlorinated Dithienyletheneâ€Based Copolymers for Airâ€6table nâ€Type Conductivity and Thermoelectricity. Advanced Functional Materials, 2021, 31, 2005901.	14.9	50
5	Using Preformed Meisenheimer Complexes as Dopants for nâ€Type Organic Thermoelectrics with High Seebeck Coefficients and Power Factors. Advanced Functional Materials, 2021, 31, 2010567.	14.9	28
6	3,4,5â€Trimethoxy Substitution on an Nâ€DMBI Dopant with New Nâ€Type Polymers: Polymerâ€Dopant Matchir for Improved Conductivityâ€Seebeck Coefficient Relationship. Angewandte Chemie, 2021, 133, 27418-27425.	^{1g} 2.0	1
7	3,4,5â€Trimethoxy Substitution on an Nâ€DMBI Dopant with New Nâ€Type Polymers: Polymerâ€Dopant Matchir for Improved Conductivity‧eebeck Coefficient Relationship. Angewandte Chemie - International Edition, 2021, 60, 27212-27219.	ng 13.8	20
8	Photothermal Therapy Combined with Light-Induced Generation of Alkyl Radicals for Enhanced Efficacy of Tumor Treatment. ACS Applied Polymer Materials, 2020, 2, 4188-4194.	4.4	9
9	Enhanced and unconventional responses in chemiresistive sensing devices for nitrogen dioxide and ammonia from carboxylated alkylthiophene polymers. Materials Horizons, 2020, 7, 1358-1371.	12.2	17
10	Tailor-Made Semiconducting Polymers for Second Near-Infrared Photothermal Therapy of Orthotopic Liver Cancer. ACS Nano, 2019, 13, 7345-7354.	14.6	126
11	Preparation of AZO:PDIN hybrid interlayer materials and application in high-gain polymer photodetectors with spectral response from 300†nm to 1700†nm. Organic Electronics, 2019, 68, 242-247.	2.6	4
12	A Humid-Air-Operable, NO ₂ -Responsive Polymer Transistor Series Circuit with Improved Signal-to-Drift Ratio Based on Polymer Semiconductor Oxidation. ACS Sensors, 2019, 4, 3240-3247.	7.8	22
13	Side-chain engineering in naphthalenediimide-based n-type polymers for high-performance all-polymer photodetectors. Polymer Chemistry, 2018, 9, 327-334.	3.9	17
14	Low-LUMO acceptor polymers for high-gain all-polymer photodiodes. Journal of Materials Chemistry C, 2018, 6, 10838-10844.	5.5	6
15	Lowâ€Bandgap Terpolymers for Highâ€Gain Photodiodes with High Detectivity and Responsivity from 300â€nm to 1600â€nm. ChemistrySelect, 2018, 3, 7385-7393.	1.5	6
16	Lowâ€Bandgap Polymers for Highâ€Performance Photodiodes with Maximal EQE near 1200 nm and Broad Spectral Response from 300 to 1700 nm. Advanced Optical Materials, 2018, 6, 1800038.	7.3	62
17	Side-chain engineering for fine-tuning of molecular packing and nanoscale blend morphology in polymer photodetectors. Polymer Chemistry, 2017, 8, 2055-2062.	3.9	15
18	Low-bandgap donor–acceptor polymers for photodetectors with photoresponsivity from 300 nm to 1600 nm. Journal of Materials Chemistry C, 2017, 5, 159-165.	5.5	70

Jinfeng Han

#	Article	IF	CITATIONS
19	Naphthalene diimide–diketopyrrolopyrrole copolymers as non-fullerene acceptors for use in bulk-heterojunction all-polymer UV–NIR photodetectors. Polymer Chemistry, 2017, 8, 528-536.	3.9	32
20	Enhancement of photodetector performance by tuning donor-acceptor ratios in diketopyrrolopyrrole- and thiophene-based polymers. Polymer, 2016, 99, 427-433.	3.8	10
21	Significant enhancement of photodetector performance by subtle changes in the side chains of dithienopyrrole-based polymers. RSC Advances, 2016, 6, 22494-22499.	3.6	8
22	Optimization of Broad-Response and High-Detectivity Polymer Photodetectors by Bandgap Engineering of Weak Donor–Strong Acceptor Polymers. Macromolecules, 2015, 48, 3941-3948.	4.8	72
23	End-Group Engineering of Low-Bandgap Compounds for High-Detectivity Solution-Processed Small-Molecule Photodetectors. Journal of Physical Chemistry C, 2015, 119, 25243-25251.	3.1	6