Jinfeng Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11815399/publications.pdf Version: 2024-02-01

LINEENC HAN

#	Article	IF	CITATIONS
1	Tailor-Made Semiconducting Polymers for Second Near-Infrared Photothermal Therapy of Orthotopic Liver Cancer. ACS Nano, 2019, 13, 7345-7354.	14.6	126
2	Optimization of Broad-Response and High-Detectivity Polymer Photodetectors by Bandgap Engineering of Weak Donor–Strong Acceptor Polymers. Macromolecules, 2015, 48, 3941-3948.	4.8	72
3	Low-bandgap donor–acceptor polymers for photodetectors with photoresponsivity from 300 nm to 1600 nm. Journal of Materials Chemistry C, 2017, 5, 159-165.	5.5	70
4	Lowâ€Bandgap Polymers for Highâ€Performance Photodiodes with Maximal EQE near 1200 nm and Broad Spectral Response from 300 to 1700 nm. Advanced Optical Materials, 2018, 6, 1800038.	7.3	62
5	Dichlorinated Dithienyletheneâ€Based Copolymers for Airâ€Stable nâ€Type Conductivity and Thermoelectricity. Advanced Functional Materials, 2021, 31, 2005901.	14.9	50
6	Naphthalene diimide–diketopyrrolopyrrole copolymers as non-fullerene acceptors for use in bulk-heterojunction all-polymer UV–NIR photodetectors. Polymer Chemistry, 2017, 8, 528-536.	3.9	32
7	Using Preformed Meisenheimer Complexes as Dopants for nâ€Type Organic Thermoelectrics with High Seebeck Coefficients and Power Factors. Advanced Functional Materials, 2021, 31, 2010567.	14.9	28
8	A Humid-Air-Operable, NO ₂ -Responsive Polymer Transistor Series Circuit with Improved Signal-to-Drift Ratio Based on Polymer Semiconductor Oxidation. ACS Sensors, 2019, 4, 3240-3247.	7.8	22
9	3,4,5â€Trimethoxy Substitution on an Nâ€DMBI Dopant with New Nâ€Type Polymers: Polymerâ€Dopant Matching for Improved Conductivityâ€Seebeck Coefficient Relationship. Angewandte Chemie - International Edition, 2021, 60, 27212-27219.	g 13.8	20
10	Side-chain engineering in naphthalenediimide-based n-type polymers for high-performance all-polymer photodetectors. Polymer Chemistry, 2018, 9, 327-334.	3.9	17
11	Enhanced and unconventional responses in chemiresistive sensing devices for nitrogen dioxide and ammonia from carboxylated alkylthiophene polymers. Materials Horizons, 2020, 7, 1358-1371.	12.2	17
12	Side-chain engineering for fine-tuning of molecular packing and nanoscale blend morphology in polymer photodetectors. Polymer Chemistry, 2017, 8, 2055-2062.	3.9	15
13	A New Polystyrene–Poly(vinylpyridinium) Ionic Copolymer Dopant for nâ€ T ype Allâ€Polymer Thermoelectrics with High and Stable Conductivity Relative to the Seebeck Coefficient giving High Power Factor. Advanced Materials, 2022, 34, e2201062.	21.0	13
14	Enhancement of photodetector performance by tuning donor-acceptor ratios in diketopyrrolopyrrole- and thiophene-based polymers. Polymer, 2016, 99, 427-433.	3.8	10
15	Photothermal Therapy Combined with Light-Induced Generation of Alkyl Radicals for Enhanced Efficacy of Tumor Treatment. ACS Applied Polymer Materials, 2020, 2, 4188-4194.	4.4	9
16	High-Performance All-Polymer Photodetectors Enabled by New Random Terpolymer Acceptor with Fine-Tuned Molecular Weight. ACS Applied Materials & Interfaces, 2022, 14, 26978-26987.	8.0	9
17	Significant enhancement of photodetector performance by subtle changes in the side chains of dithienopyrrole-based polymers. RSC Advances, 2016, 6, 22494-22499.	3.6	8
18	End-Group Engineering of Low-Bandgap Compounds for High-Detectivity Solution-Processed Small-Molecule Photodetectors. Journal of Physical Chemistry C, 2015, 119, 25243-25251.	3.1	6

JINFENG HAN

		CHAHONS
Low-LUMO acceptor polymers for high-gain all-polymer photodiodes. Journal of Materials Chemistry C, 2018, 6, 10838-10844.	5.5	6
20 Lowâ€Bandgap Terpolymers for Highâ€Gain Photodiodes with High Detectivity and Responsivity from 300â€nm to 1600â€nm. ChemistrySelect, 2018, 3, 7385-7393.	1.5	6
Preparation of AZO:PDIN hybrid interlayer materials and application in high-gain polymer photodetectors with spectral response from 300†nm to 1700†nm. Organic Electronics, 2019, 68, 242-247.	2.6	4
A Dichlorinated Dithienylethene-Diketopyrrolopyrrole-Based Copolymer with Pronounced P–N Crossover: Evidence for Anionic Seebeck Contribution. , 2022, 4, 1139-1145.		4
 3,4,5â€Trimethoxy Substitution on an Nâ€DMBI Dopant with New Nâ€Type Polymers: Polymerâ€Dopant Matchir for Improved Conductivityâ€Seebeck Coefficient Relationship. Angewandte Chemie, 2021, 133, 27418-27425. 	າg _{2.0}	1