
Yufei Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11815244/publications.pdf Version: 2024-02-01

VIIEEI SUN

#	Article	IF	CITATIONS
1	Tomato protein phosphatase 2C influences the onset of fruit ripening and fruit glossiness. Journal of Experimental Botany, 2021, 72, 2403-2418.	4.8	25
2	Ultrafast, Kinetically Limited, Ambient Synthesis of Vanadium Dioxides through Laser Direct Writing on Ultrathin Chalcogenide Matrix. ACS Nano, 2021, 15, 10502-10513.	14.6	17
3	Few-Layer MoS ₂ Nanosheet/Carbon Nanotube Composite Films for Long-Lifetime Lithium Storage and Hydrogen Generation. ACS Applied Nano Materials, 2021, 4, 4754-4762.	5.0	13
4	Two-Dimensional Lateral Heterostructures Made by Selective Reaction on a Patterned Monolayer MoS2 Matrix. ACS Applied Materials & Interfaces, 2021, 13, 26143-26151.	8.0	5
5	Grainâ€Boundary Engineering of Monolayer MoS ₂ for Energyâ€Efficient Lateral Synaptic Devices. Advanced Materials, 2021, 33, e2102435.	21.0	53
6	Grainâ€Boundary Engineering of Monolayer MoS ₂ for Energyâ€Efficient Lateral Synaptic Devices (Adv. Mater. 32/2021). Advanced Materials, 2021, 33, 2170251.	21.0	1
7	Monolayer MoS ₂ Synaptic Transistors for High-Temperature Neuromorphic Applications. Nano Letters, 2021, 21, 10400-10408.	9.1	41
8	Wafer-scale freestanding vanadium dioxide film. Science Advances, 2021, 7, eabk3438.	10.3	24
9	Bifunctional NbS ₂ -Based Asymmetric Heterostructure for Lateral and Vertical Electronic Devices. ACS Nano, 2020, 14, 175-184.	14.6	51
10	Evolution of Abscisic Acid Signaling Module and Its Perception. Frontiers in Plant Science, 2020, 11, 934.	3.6	40
11	Bioelectronicsâ€Related 2D Materials Beyond Graphene: Fundamentals, Properties, and Applications. Advanced Functional Materials, 2020, 30, 2003732.	14.9	39
12	A Review of Low-Power Electric Propulsion Research at the Space Propulsion Centre Singapore. Aerospace, 2020, 7, 67.	2.2	25
13	Direct laser patterning of two-dimensional lateral transition metal disulfide-oxide-disulfide heterostructures for ultrasensitive sensors. Nano Research, 2020, 13, 2035-2043.	10.4	21
14	lonic Sensing Hydrogels: Ultrasensitive, Lowâ€Voltage Operational, and Asymmetric Ionic Sensing Hydrogel for Multipurpose Applications (Adv. Funct. Mater. 12/2020). Advanced Functional Materials, 2020, 30, 2070080.	14.9	1
15	Ultrasensitive, Lowâ€Voltage Operational, and Asymmetric Ionic Sensing Hydrogel for Multipurpose Applications. Advanced Functional Materials, 2020, 30, 1909616.	14.9	29
16	Preliminary Experiments on Rotamak-Like Plasma Engine. , 2020, , .		0
17	High-Responsivity Photovoltaic Photodetectors Based on MoTe2/MoSe2 van der Waals Heterojunctions. Crystals, 2019, 9, 315.	2.2	21
18	Watching Dynamic Self-Assembly of Web Buckles in Strained MoS ₂ Thin Films. ACS Nano, 2019, 13, 3106-3116.	14.6	24

Yufei Sun

#	Article	IF	CITATIONS
19	A ligand-independent origin of abscisic acid perception. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24892-24899.	7.1	84
20	Phase-transition modulated, high-performance dual-mode photodetectors based on WSe ₂ /VO ₂ heterojunctions. Applied Physics Reviews, 2019, 6, 041407.	11.3	50
21	Strain engineering in functional 2-dimensional materials. Journal of Applied Physics, 2019, 125, .	2.5	79
22	Elastic Properties and Fracture Behaviors of Biaxially Deformed, Polymorphic MoTe ₂ . Nano Letters, 2019, 19, 761-769.	9.1	67
23	The functional analysis of SINCED1 in tomato pollen development. Cellular and Molecular Life Sciences, 2018, 75, 3457-3472.	5.4	28
24	Substrate modified thermal stability of mono- and few-layer MoS ₂ . Nanoscale, 2018, 10, 3540-3546.	5.6	43
25	Suppressing Type 2C Protein Phosphatases Alters Fruit Ripening and the Stress Response in Tomato. Plant and Cell Physiology, 2018, 59, 142-154.	3.1	47
26	Robust photoluminescence energy of MoS2/graphene heterostructure against electron irradiation. Science China Materials, 2018, 61, 1351-1359.	6.3	8
27	Expression pattern of ABA metabolic and signalling genes during floral development and fruit set in sweet cherry. Plant Growth Regulation, 2018, 84, 71-80.	3.4	6
28	SlPti4 Affects Regulation of Fruit Ripening, Seed Germination and Stress Responses by Modulating ABA Signaling in Tomato. Plant and Cell Physiology, 2018, 59, 1956-1965.	3.1	30
29	Abscisic acid catabolism enhances dormancy release of grapevine buds. Plant, Cell and Environment, 2018, 41, 2490-2503.	5.7	52
30	Variable responses of two VIMYBA gene promoters to ABA and ACC in Kyoho grape berries. Journal of Plant Physiology, 2017, 211, 81-89.	3.5	8
31	Suppressing <scp>ABA</scp> uridine diphosphate glucosyltransferase (<i>Sl<scp>UGT</scp>75C1</i>) alters fruit ripening and the stress response in tomato. Plant Journal, 2017, 91, 574-589.	5.7	61
32	Modulating Photoluminescence of Monolayer Molybdenum Disulfide by Metal–Insulator Phase Transition in Active Substrates. Small, 2016, 12, 3976-3984.	10.0	30
33	PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance. Journal of Experimental Botany, 2015, 66, 3765-3774.	4.8	57
34	Transcriptional regulation of PaPYLs, PaPP2Cs and PaSnRK2s during sweet cherry fruit development and in response to abscisic acid and auxin at onset of fruit ripening. Plant Growth Regulation, 2015, 75, 455-464.	3.4	39
35	Transcriptional regulation of genes encoding ABA metabolism enzymes during the fruit development and dehydration stress of pear 'Gold Nijisseiki'. Plant Physiology and Biochemistry, 2014, 82, 299-308.	5.8	19
36	The Role of ABA in the Maturation and Postharvest Life of a Nonclimacteric Sweet Cherry Fruit. Journal of Plant Growth Regulation, 2014, 33, 373-383.	5.1	73

Yufei Sun

#	Article	IF	CITATIONS
37	SINCED1 and SICYP707A2: key genes involved in ABA metabolism during tomato fruit ripening. Journal of Experimental Botany, 2014, 65, 5243-5255.	4.8	95
38	Transcriptional regulation of abscisic acid signal core components during cucumber seed germination and under Cu2+, Zn2+, NaCl and simulated acid rain stresses. Plant Physiology and Biochemistry, 2014, 76, 67-76.	5.8	41
39	Transcriptional Regulation of Genes Encoding Key Enzymes of Abscisic Acid Metabolism During Melon (Cucumis melo L.) Fruit Development and Ripening. Journal of Plant Growth Regulation, 2013, 32, 233-244.	5.1	42
40	The role of abscisic acid in regulating cucumber fruit development and ripening and its transcriptional regulation. Plant Physiology and Biochemistry, 2013, 64, 70-79.	5.8	76
41	The expression pattern of β-glucosidase genes (VvBGs) during grape berry maturation and dehydration stress. Plant Growth Regulation, 2013, 70, 105-114.	3.4	14
42	The role of <i>Fa<scp>BG</scp>3</i> in fruit ripening and <i>B.Âcinerea</i> fungal infection of strawberry. Plant Journal, 2013, 76, 24-35.	5.7	69
43	Suppression of 9 <i>-</i> cis <i>-</i> Epoxycarotenoid Dioxygenase, Which Encodes a Key Enzyme in Abscisic Acid Biosynthesis, Alters Fruit Texture in Transgenic Tomato Â. Plant Physiology, 2012, 158, 283-298.	4.8	228
44	The expression profiling of the CsPYL, CsPP2C and CsSnRK2 gene families during fruit development and drought stress in cucumber. Journal of Plant Physiology, 2012, 169, 1874-1882.	3.5	59
45	Non-climacteric ripening in strawberry fruit is linked to ABA, FaNCED2 and FaCYP707A1. Functional Plant Biology, 2012, 39, 351.	2.1	68
46	Expression analysis of β-glucosidase genes that regulate abscisic acid homeostasis during watermelon (Citrullus lanatus) development and under stress conditions. Journal of Plant Physiology, 2012, 169, 78-85.	3.5	44