
Ron Orlando

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11813980/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reducing Interferences in Glycosylation Site Mapping. Journal of Biomolecular Techniques, 2022, 33, 3fc1f5fe.7b3a077d.	1.5	1
2	Flash Oxidation (FOX) System: A Novel Laser-Free Fast Photochemical Oxidation Protein Footprinting Platform. Journal of the American Society for Mass Spectrometry, 2021, 32, 1601-1609.	2.8	23
3	Compensated Hydroxyl Radical Protein Footprinting Measures Buffer and Excipient Effects on Conformation and Aggregation in an Adalimumab Biosimilar. AAPS Journal, 2019, 21, 87.	4.4	23
4	Proteomics reveals localization of cuticular proteins in Anopheles gambiae. Insect Biochemistry and Molecular Biology, 2019, 104, 91-105.	2.7	15
5	Peptide retention prediction using hydrophilic interaction liquid chromatography coupled to mass spectrometry. Journal of Chromatography A, 2018, 1537, 58-65.	3.7	11
6	Predicting the HILIC Retention Behavior of the N-Linked Glycopeptides Produced by Trypsin Digestion of Immunoglobulin Gs (IgGs). Journal of Biomolecular Techniques, 2018, 29, 98-104.	1.5	7
7	The Separation and Quantitation of Peptides with and without Oxidation of Methionine and Deamidation of Asparagine Using Hydrophilic Interaction Liquid Chromatography with Mass Spectrometry (HILIC-MS). Journal of the American Society for Mass Spectrometry, 2017, 28, 818-826.	2.8	19
8	A Multivariate Mixture Model to Estimate the Accuracy of Glycosaminoglycan Identifications Made by Tandem Mass Spectrometry (MS/MS) and Database Search. Molecular and Cellular Proteomics, 2017, 16, 255-264.	3.8	9
9	Properties of the cuticular proteins of Anopheles gambiae as revealed by serial extraction of adults. PLoS ONE, 2017, 12, e0175423.	2.5	13
10	Predicting the Retention Behavior of Specific O-Linked Glycopeptides. Journal of Biomolecular Techniques, 2017, 28, 122-126.	1.5	12
11	Resolving Isomeric Glycopeptide Glycoforms with Hydrophilic Interaction Chromatography (HILIC). Journal of Biomolecular Techniques, 2016, 27, 98-104.	1.5	56
12	Reliable LCâ€MS quantitative glycomics using iGlycoMab stable isotope labeled glycans as internal standards. Electrophoresis, 2016, 37, 1489-1497.	2.4	23
13	Distribution of cuticular proteins in different structures of adult Anopheles gambiae. Insect Biochemistry and Molecular Biology, 2016, 75, 45-57.	2.7	31
14	B-cell–independent sialylation of IgG. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7207-7212.	7.1	115
15	GAG-ID: Heparan Sulfate (HS) and Heparin Glycosaminoglycan High-Throughput Identification Software*. Molecular and Cellular Proteomics, 2015, 14, 1720-1730.	3.8	26
16	A Novel Method for Relative Quantitation of N-Glycans by Isotopic Labeling Using 18O-Water. Journal of Biomolecular Techniques, 2014, 25, jbt.14-2504-003.	1.5	11
17	Loss of Arabidopsis GAUT12/IRX8 causes anther indehiscence and leads to reduced G lignin associated with altered matrix polysaccharide deposition. Frontiers in Plant Science, 2014, 5, 357.	3.6	50
18	Proteomic Analysis of the Acidocalcisome, an Organelle Conserved from Bacteria to Human Cells. PLoS Pathogens, 2014, 10, e1004555.	4.7	77

#	Article	IF	CITATIONS
19	Liquid Chromatography-Selected Reaction Monitoring (LC-SRM) Approach for the Separation and Quantitation of Sialylated N-Glycans Linkage Isomers. Analytical Chemistry, 2014, 86, 10584-10590.	6.5	59
20	Quantitative Analysis of Glycoprotein Glycans. Methods in Molecular Biology, 2013, 951, 197-215.	0.9	15
21	The Use of Ammonium Formate as a Mobile-Phase Modifier for LC-MS/MS Analysis of Tryptic Digests. Journal of Biomolecular Techniques, 2013, 24, 187-197.	1.5	36
22	Optimization of Data-Dependent Acquisition Parameters for Coupling High-Speed Separations with LC-MS/MS for Protein Identifications. Journal of Biomolecular Techniques, 2013, 24, jbt.13-2402-003.	1.5	16
23	Biosynthesis of 4-Thiouridine in tRNA in the Methanogenic Archaeon Methanococcus maripaludis*. Journal of Biological Chemistry, 2012, 287, 36683-36692.	3.4	48
24	Catalytic Mechanism of Sep-tRNA:Cys-tRNA Synthase. Journal of Biological Chemistry, 2012, 287, 5426-5433.	3.4	16
25	Proteomic Analysis of Ripening Tomato Fruit Infected by <i>Botrytis cinerea</i> . Journal of Proteome Research, 2012, 11, 2178-2192.	3.7	82
26	Structures and biosynthesis of the N- and O-glycans of recombinant human oviduct-specific glycoprotein expressed in human embryonic kidney cells. Carbohydrate Research, 2012, 358, 47-55.	2.3	10
27	Proteome Analysis of Cry4Ba Toxin-interacting <i>Aedes aegypti</i> Lipid Rafts using geLC–MS/MS. Journal of Proteome Research, 2012, 11, 5843-5855.	3.7	21
28	Synthesis of the plant cell wallË^s most complex glycan: pectin ―surprises in glycosyltransferase processing and anchoring in the Golgi. FASEB Journal, 2012, 26, 349.3.	0.5	2
29	Membrane proteomic signatures of karyotypically normal and abnormal human embryonic stem cell lines and derivatives. Proteomics, 2011, 11, 2515-2527.	2.2	17
30	Identification of in vivo released products of Onchocerca with diagnostic potential, and characterization of a dominant member, the OV1CF intermediate filament. Infection, Genetics and Evolution, 2011, 11, 778-783.	2.3	7
31	Galacturonosyltransferase (GAUT)1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan:galacturonosyltransferase complex. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20225-20230.	7.1	183
32	Identification of Contractile Vacuole Proteins in Trypanosoma cruzi. PLoS ONE, 2011, 6, e18013.	2,5	69
33	Identification and Localization of Myxococcus xanthus Porins and Lipoproteins. PLoS ONE, 2011, 6, e27475.	2.5	25
34	The <i>Botrytis cinerea</i> early secretome. Proteomics, 2010, 10, 3020-3034.	2.2	141
35	Glycoproteomic Analysis of Embryonic Stem Cells: Identification of Potential Glycobiomarkers Using Lectin Affinity Chromatography of Glycopeptides. Journal of Proteome Research, 2010, 9, 2062-2075.	3.7	53
36	Quantitative Glycomics. Methods in Molecular Biology, 2010, 600, 31-49.	0.9	17

#	Article	IF	CITATIONS
37	The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi. BMC Genomics, 2009, 10, 370.	2.8	125
38	A proteomic study of pectinâ€degrading enzymes secreted by Botrytis cinerea grown in liquid culture. Proteomics, 2009, 9, 3126-3135.	2.2	81
39	IDAWG: Metabolic Incorporation of Stable Isotope Labels for Quantitative Glycomics of Cultured Cells. Journal of Proteome Research, 2009, 8, 3816-3823.	3.7	108
40	Comparative Proteomic Analysis ofBotrytis cinereaSecretome. Journal of Proteome Research, 2009, 8, 1123-1130.	3.7	104
41	Quantification by isobaric labeling (QUIBL) for the comparative glycomic study of O-linked glycans. International Journal of Mass Spectrometry, 2008, 278, 137-142.	1.5	38
42	Quantifying protein interface footprinting by hydroxyl radical oxidation and molecular dynamics simulation: Application to galectin-1. Journal of the American Society for Mass Spectrometry, 2008, 19, 1692-1705.	2.8	65
43	Up-regulation of NG2 proteoglycan and interferon-induced transmembrane proteins 1 and 3 in mouse astrocytoma: A membrane proteomics approach. Cancer Letters, 2008, 263, 243-252.	7.2	62
44	Quantitation by Isobaric Labeling: Applications to Glycomics. Journal of Proteome Research, 2008, 7, 367-374.	3.7	146
45	Proteins Associated with the <i>Myxococcus xanthus</i> Extracellular Matrix. Journal of Bacteriology, 2007, 189, 7634-7642.	2.2	36
46	Tools for glycomics: relative quantitation of glycans by isotopic permethylation using 13CH3I. Glycobiology, 2007, 17, 677-687.	2.5	146
47	Proteomic analysis of cast cuticles from Anopheles gambiae by tandem mass spectrometry. Insect Biochemistry and Molecular Biology, 2007, 37, 135-146.	2.7	81
48	Fourier transform mass spectrometry to monitor hyaluronan-protein interactions: use of hydrogen/deuterium amide exchange. Rapid Communications in Mass Spectrometry, 2007, 21, 121-131.	1.5	14
49	A potential pitfall in180-based N-linked glycosylation site mapping. Rapid Communications in Mass Spectrometry, 2007, 21, 674-682.	1.5	53
50	Glycoproteomics ofTrypanosoma cruziTrypomastigotes Using Subcellular Fractionation, Lectin Affinity, and Stable Isotope Labeling. Journal of Proteome Research, 2006, 5, 3376-3384.	3.7	84
51	Glycan analysis of recombinant Aspergillus niger endo-polygalacturonase A. Carbohydrate Research, 2006, 341, 2370-2378.	2.3	12
52	Comprehensive glycan analysis of recombinant Aspergillus niger endo-polygalacturonase C. Analytical Biochemistry, 2006, 354, 43-53.	2.4	23
53	Trypsin is the primary mechanism by which the 18O isotopic label is lost in quantitative proteomic studies. Analytical Biochemistry, 2006, 359, 26-34.	2.4	20
54	Tools for Glycoproteomic Analysis:  Size Exclusion Chromatography Facilitates Identification of Tryptic Glycopeptides with N-linked Glycosylation Sites. Journal of Proteome Research, 2006, 5, 701-708.	3.7	175

Ron Orlando

#	Article	IF	CITATIONS
55	Simple modification of a protein database for mass spectral identification of N-linked glycopeptides. Rapid Communications in Mass Spectrometry, 2005, 19, 3002-3006.	1.5	18
56	Post-translational modifications of recombinantB. cinerea EPG 6. Rapid Communications in Mass Spectrometry, 2005, 19, 3389-3397.	1.5	6
57	A Heuristic Method for Assigning a False-discovery Rate for Protein Identifications from Mascot Database Search Results. Molecular and Cellular Proteomics, 2005, 4, 762-772.	3.8	180
58	Proteomics of Magnaporthe Grisea: Liquid Chromatography Mass Spectrometry for the Identification of Extracellular Proteins. , 2004, , 39-46.		0
59	Use of Amide Exchange Mass Spectrometry To Study Conformational Changes within the Endopolygalacturonase Ilâ^'Homogalacturonanâ^'Polygalacturonase Inhibiting Protein Systemâ€. Biochemistry, 2002, 41, 10225-10233.	2.5	44
60	Studying protein-carbohydrate interactions by amide hydrogen/deuterium exchange mass spectrometry. Rapid Communications in Mass Spectrometry, 2002, 16, 1569-1574.	1.5	13
61	Studies on the glycosylation of wild-type and mutant forms of Aspergillus niger pectin methylesterase. Carbohydrate Research, 2002, 337, 803-812.	2.3	22
62	On-target endoglycosidase digestion matrix-assisted laser desorption/ionization mass spectrometry of glycopeptides. Rapid Communications in Mass Spectrometry, 2001, 15, 2284-2289.	1.5	11
63	Tandem mass spectrometric analysis of Aspergillus niger pectin methylesterase: mode of action on fully methyl-esterified oligogalacturonates. Biochemical Journal, 2000, 346, 469-474.	3.7	27
64	Differentiating ?- and ?-aspartic acids by electrospray ionization and low-energy tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2000, 14, 2092-2102.	1.5	67
65	A new liquid chromatography/tandem mass spectrometric approach for the identification of class I major histocompatibility complex associated peptides that eliminates the need for bioassays. , 1999, 13, 1024-1030.		15
66	Characterization of the glycosylation of recombinantEndopolygalacturonase I fromAspergillus niger. Rapid Communications in Mass Spectrometry, 1999, 13, 1448-1453.	1.5	15
67	Characterization of theN-linked glycosylation site of recombinant pectate lyase. Rapid Communications in Mass Spectrometry, 1999, 13, 2382-2387.	1.5	16
68	Solid-Phase Extraction/MALDI-MS:  Extended Ion-Pairing Surfaces for the On-Target Cleanup of Protein Samples. Analytical Chemistry, 1999, 71, 4753-4757.	6.5	36
69	On-Target Exoglycosidase Digestions/MALDI-MS for Determining the Primary Structures of Carbohydrate Chains. Analytical Chemistry, 1999, 71, 1479-1482.	6.5	47
70	Structure of a muramic acid containing capsular polysaccharide from the pathogenic strain of Vibrio vulnificus ATCC 27562. Carbohydrate Research, 1998, 309, 65-76.	2.3	19
71	Is canine hepatocerebellar degeneration syndrome an animal model for carbohydrate-deficient glycoprotein syndrome in humans? An example of sequencing glycoprotein glycans with mass spectrometry. Rapid Communications in Mass Spectrometry, 1998, 12, 571-579.	1.5	2
72	Fast atom bombardment mass spectrometry of carbohydrates contaminated with inorganic salts using		6

a crown ether. , 1998, 33, 680-682.

#	Article	IF	CITATIONS
73	Optimization of a hydrophobic solid-phase extraction interface for matrix-assisted laser desorption/ionization. Journal of Mass Spectrometry, 1998, 33, 1141-1147.	1.6	26
74	On-Probe Solid-Phase Extraction/MALDI-MS Using Ion-Pairing Interactions for the Cleanup of Peptides and Proteins. Analytical Chemistry, 1998, 70, 3757-3761.	6.5	49
75	A Desalting Approach for MALDI-MS Using On-Probe Hydrophobic Self-Assembled Monolayers. Analytical Chemistry, 1997, 69, 4716-4720.	6.5	86
76	A New Strategy for MALDI on Magnetic Sector Mass Spectrometers with Point Detectors. Analytical Chemistry, 1997, 69, 327-332.	6.5	16
77	Trifluoroacetic acid pretreatment reproducibly disaggregates the amyloid β-peptide. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 1997, 4, 240-252.	3.0	69
78	Identification of the glycosylation site and glycan structures of recombinantendopolygalacturonase II by mass spectrometry. Rapid Communications in Mass Spectrometry, 1997, 11, 1257-1262.	1.5	29
79	Simplifying the Exoglycosidase Digestion/MALDI-MS Procedures for Sequencing N-Linked Carbohydrate Side Chains. Analytical Chemistry, 1996, 68, 570-572.	6.5	35
80	A New Matrix for Matrix-assisted Laser Desorption/Ionization on Magnetic Sector Instruments with Point Detectors. Rapid Communications in Mass Spectrometry, 1996, 10, 923-926.	1.5	58
81	Identifying the Clycosylation Sites and Site-specific Carbohydrate Heterogeneity of Clycoproteins by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Communications in Mass Spectrometry, 1996, 10, 932-936.	1.5	25
82	New Immobilization Chemistry for Probe Affinity Mass Spectrometry. , 1996, 10, 1688-1692.		42
83	The structures of arabinoxyloglucans produced by solanaceous plants. Carbohydrate Research, 1996, 285, 99-128.	2.3	103
84	A New Matrix for Matrixâ€assisted Laser Desorption/Ionization on Magnetic Sector Instruments with Point Detectors. Rapid Communications in Mass Spectrometry, 1996, 10, 923-926.	1.5	1
85	Analysis of normal human fetal eye lens crystallins by high-performance liquid chromatography/mass spectrometry. Journal of Mass Spectrometry, 1995, 30, 424-431.	1.6	11
86	Complete sequence confirmation of large peptides by high energy collisional activation of multiply protonated ions. Journal of the American Society for Mass Spectrometry, 1995, 6, 234-241.	2.8	14
87	Probe-Immobilized Affinity Chromatography/Mass Spectrometry. Analytical Chemistry, 1995, 67, 4581-4585.	6.5	92
88	Sequencing membrane proteins by tandem mass spectrometry. Organic Mass Spectrometry, 1993, 28, 1395-1402.	1.3	9
89	Analysis of peptides contaminated with alkali-metal salts by fast atom bombardment mass spectrometry using crown ethers. Analytical Chemistry, 1992, 64, 332-334.	6.5	20
90	Tandem mass spectrometric analysis of peptides at the femtomole level. Analytical Chemistry, 1992, 64, 957-960.	6.5	15

#	Article	IF	CITATIONS
91	Covalent modification of Alzheimer's amyloid \hat{I}^2 -peptide in formic acid solutions. Biochemical and Biophysical Research Communications, 1992, 184, 686-691.	2.1	21
92	Detection of fragment ions produced by collisional activation of multiply charged ions in a floated collision cell. Organic Mass Spectrometry, 1992, 27, 151-155.	1.3	13
93	Endothermic ion molecule reactions. Journal of the American Society for Mass Spectrometry, 1991, 2, 189-197.	2.8	25
94	Charge changing reactions in a four-sector tandem mass spectrometer with a floated collision cell. Organic Mass Spectrometry, 1991, 26, 664-666.	1.3	11
95	Endothermic ion/molecule reactions Part VI. Reaction-induced dissociation of peptides containing basic residues using dimethyl- and trimethylamine. International Journal of Mass Spectrometry and Ion Processes, 1991, 111, 27-40.	1.8	2
96	Location of unsaturated positions in phosphatidyl cholines by consecutive-reaction monitoring. Rapid Communications in Mass Spectrometry, 1991, 5, 124-127.	1.5	19
97	Endothermic ion/molecule reactions III. High energy collisional activation at low kinetic energies. Rapid Communications in Mass Spectrometry, 1990, 4, 259-262.	1.5	13
98	Structural analysis of oligosaccharides by tandem mass spectrometry: Collisional activation of sodium adduct ions. Biological Mass Spectrometry, 1990, 19, 747-754.	0.5	102
99	Endothermic ion-molecule reactions: V. Remote-site fragmentation atvery low kinetic energies. Organic Mass Spectrometry, 1990, 25, 485-489.	1.3	12
100	Radiative stabilization of trimethylsilyl adduct ions. Journal of the American Society for Mass Spectrometry, 1990, 1, 144-148.	2.8	10
101	Endothermic ion-molecule reactions: strategies for tandem mass spectrometric structural analyses of large biomolecules. Analytical Chemistry, 1990, 62, 125-129.	6.5	27
102	Endothermic ion-molecule reactions. 4. Site-directed fragmentation in N-acetylated oligosaccharides at low beam energies. Analytical Chemistry, 1990, 62, 2388-2390.	6.5	13
103	Endothermic ion molecule reactions: II. Reactions between peptides with and without basic residues and ammonia. Organic Mass Spectrometry, 1989, 24, 1033-1042.	1.3	21
104	The ion chemistry and thermochemistry of several trimethylsilyl compounds. International Journal of Mass Spectrometry and Ion Processes, 1989, 92, 93-109.	1.8	12
105	Selective reagents in chemical ionization mass spectrometry: Tetramethylsilane with ethers. Organic Mass Spectrometry, 1988, 23, 527-534.	1.3	23
106	Selective reagents in chemical ionization mass spectrometry: Tetramethylsilane with aliphatic alcohols. Organic Mass Spectrometry, 1987, 22, 597-605.	1.3	36
107	Trimethylsilyl ions for selective detection of oxygenated compounds in gasoline by gas chromatography/chemical ionization mass spectrometry. Analytical Chemistry, 1986, 58, 2788-2791.	6.5	25