
Sakari Joenväärä

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11813702/publications.pdf Version: 2024-02-01

SAKADI LOENIVÃ**Ö**ØÃO

#	Article	IF	CITATIONS
1	Plasma proteome of brain-dead organ donors predicts heart transplant outcome. Journal of Heart and Lung Transplantation, 2022, 41, 311-324.	0.6	7
2	Quantitative urine proteomics in pregnant women for the identification of predictive biomarkers for preeclampsia. Translational Medicine Communications, 2022, 7, .	1.4	2
3	Quantitative glycoproteomics of human milk and association with atopic disease. PLoS ONE, 2022, 17, e0267967.	2.5	5
4	Label-free proteomics reveals serum proteins whose levels differ between pancreatic ductal adenocarcinoma patients with short or long survival. Tumor Biology, 2020, 42, 101042832093641.	1.8	4
5	Application of the UHPLC-DIA-HRMS Method for Determination of Cheese Peptides. Foods, 2020, 9, 979.	4.3	4
6	Extracellular vesicles from human plasma and serum are carriers of extravesicular cargo—lmplications for biomarker discovery. PLoS ONE, 2020, 15, e0236439.	2.5	157
7	Label-free plasma proteomics identifies haptoglobin-related protein as candidate marker of idiopathic pulmonary fibrosis and dysregulation of complement and oxidative pathways. Scientific Reports, 2020, 10, 7787.	3.3	12
8	Plasma protein expression differs between colorectal cancer patients depending on primary tumor location. Cancer Medicine, 2020, 9, 5221-5234.	2.8	8
9	Comparing serum protein levels can aid in differentiating HPV-negative and -positive oropharyngeal squamous cell carcinoma patients. PLoS ONE, 2020, 15, e0233974.	2.5	11
10	Mass spectrometry–based lipidomics of oral squamous cell carcinoma tissue reveals aberrant cholesterol and glycerophospholipid metabolism — A Pilot study. Translational Oncology, 2020, 13, 100807.	3.7	23
11	Preoperative Radiotherapy Leads to Significant Differences in the Plasma Protein Profile of Rectal Cancer Patients. Oncology, 2020, 98, 493-500.	1.9	5
12	Title is missing!. , 2020, 15, e0236439.		0
13	Title is missing!. , 2020, 15, e0236439.		0
14	Title is missing!. , 2020, 15, e0236439.		0
15	Title is missing!. , 2020, 15, e0236439.		0
16	Differences and overlap in plasma protein expression during colorectal cancer progression. Translational Medicine Communications, 2019, 4, .	1.4	5
17	Plasma Proteomics Analysis Reveals Dysregulation of Complement Proteins and Inflammation in Acquired Obesity—A Study on Rare BMIâ€Discordant Monozygotic Twin Pairs. Proteomics - Clinical Applications, 2019, 13, 1800173.	1.6	11
18	Label-free serum proteomics and multivariate data analysis identifies biomarkers and expression trends that differentiate Intraductal papillary mucinous neoplasia from pancreatic adenocarcinoma and healthy controls. Translational Medicine Communications, 2019, 4, .	1.4	2

Sakari Joenvä́¤Ã¤

#	Article	IF	CITATIONS
19	Birch pollen allergen immunotherapy reprograms nasal epithelial transcriptome and recovers microbial diversity. Journal of Allergy and Clinical Immunology, 2019, 143, 2293-2296.e11.	2.9	11
20	Identification of several plasma proteins whose levels in colorectal cancer patients differ depending on outcome. FASEB BioAdvances, 2019, 1, 723-730.	2.4	7
21	Label-free tissue proteomics can classify oral squamous cell carcinoma from healthy tissue in a stage-specific manner. Oral Oncology, 2018, 86, 206-215.	1.5	11
22	Patients with early-stage oropharyngeal cancer can be identified with label-free serum proteomics. British Journal of Cancer, 2018, 119, 200-212.	6.4	11
23	Colorectal cancer patients with different C-reactive protein levels and 5-year survival times can be differentiated with quantitative serum proteomics. PLoS ONE, 2018, 13, e0195354.	2.5	28
24	Tongue Cancer Patients Can be Distinguished from Healthy Controls by Specific <i>N</i> â€Glycopeptides Found in Serum. Proteomics - Clinical Applications, 2018, 12, e1800061.	1.6	18
25	Quantitative N-glycoproteomics reveals altered glycosylation levels of various plasma proteins in bloodstream infected patients. PLoS ONE, 2018, 13, e0195006.	2.5	19
26	Tongue cancer patients can be distinguished from healthy controls by specific N-glycopeptides found in serum Journal of Clinical Oncology, 2018, 36, e18047-e18047.	1.6	0
27	Human Spermatozoa Quantitative Proteomic Signature Classifies Normo- and Asthenozoospermia. Molecular and Cellular Proteomics, 2017, 16, 57-72.	3.8	69
28	Oral squamous cell carcinoma patients can be differentiated from healthy individuals with label-free serum proteomics. British Journal of Cancer, 2017, 117, 376-384.	6.4	16
29	Comparative proteomic profiling of the serum differentiates pancreatic cancer from chronic pancreatitis. Cancer Medicine, 2017, 6, 1738-1751.	2.8	39
30	Changes in plasma protein levels as an early indication of a bloodstream infection. PLoS ONE, 2017, 12, e0172987.	2.5	22
31	N-Glycoproteomics of Human Seminal Plasma Glycoproteins. Journal of Proteome Research, 2016, 15, 991-1001.	3.7	23
32	N-linked (N-) Glycoproteomics of Urimary Exosomes*. Molecular and Cellular Proteomics, 2015, 14, 263-276.	3.8	60
33	Molecular Mechanisms of Nasal Epithelium in Rhinitis and Rhinosinusitis. Current Allergy and Asthma Reports, 2015, 15, 495.	5.3	40
34	Expression of Tollâ€like receptors in nasal epithelium in allergic rhinitis. Apmis, 2015, 123, 716-725.	2.0	23
35	Comparison of sialylated <i><scp>N</scp></i> â€glycopeptide levels in serum of pancreatic cancer patients, acute pancreatitis patients, and healthy controls. Proteomics, 2014, 14, 1713-1723.	2.2	38
36	Allergen interactions with epithelium. Current Opinion in Allergy and Clinical Immunology, 2011, 11, 29-32.	2.3	12

Sakari JoenvÃ**ã**¤Ã¤

#	Article	IF	CITATIONS
37	Allergy as an epithelial barrier disease. Clinical and Translational Allergy, 2011, 1, 5.	3.2	49
38	Network analysis of single nucleotide polymorphisms in asthma. Journal of Asthma and Allergy, 2010, 3, 177.	3.4	15
39	Allergens are transported through the respiratory epithelium. Expert Review of Clinical Immunology, 2010, 6, 55-59.	3.0	5
40	De novo glycan structure search with the CID MS/MS spectra of native N-glycopeptides. Glycobiology, 2009, 19, 707-714.	2.5	37
41	Caveolar transport through nasal epithelium of birch pollen allergen Bet v 1 in allergic patients. Journal of Allergy and Clinical Immunology, 2009, 124, 135-142.e21.	2.9	40
42	N-Glycoproteomics – An automated workflow approach. Glycobiology, 2008, 18, 339-349.	2.5	65