Stephen Blake

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11811973/publications.pdf

Version: 2024-02-01

50 4,182 27 44
papers citations h-index g-index

52 52 52 5578 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Averting biodiversity collapse in tropical forest protected areas. Nature, 2012, 489, 290-294.	27.8	909
2	Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science, 2018, 359, 466-469.	12.6	783
3	Devastating Decline of Forest Elephants in Central Africa. PLoS ONE, 2013, 8, e59469.	2.5	266
4	Roadless Wilderness Area Determines Forest Elephant Movements in the Congo Basin. PLoS ONE, 2008, 3, e3546.	2.5	159
5	Recent decline in suitable environmental conditions for <scp>A</scp> frican great apes. Diversity and Distributions, 2012, 18, 1077-1091.	4.1	132
6	Forest Elephants: Tree Planters of the Congo. Biotropica, 2009, 41, 459-468.	1.6	119
7	Forest Elephant Crisis in the Congo Basin. PLoS Biology, 2007, 5, e111.	5.6	118
8	Sinking the Flagship: the Case of Forest Elephants in Asia and Africa. Conservation Biology, 2004, 18, 1191-1202.	4.7	114
9	Protected Areas in Tropical Africa: Assessing Threats and Conservation Activities. PLoS ONE, 2014, 9, e114154.	2.5	100
10	Seed dispersal by Galápagos tortoises. Journal of Biogeography, 2012, 39, 1961-1972.	3.0	89
11	Human proximity and habitat fragmentation are key drivers of the rangewide bonobo distribution. Biodiversity and Conservation, 2013, 22, 3085-3104.	2.6	86
12	Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. Ecography, 2016, 39, 194-203.	4.5	86
13	Guns, germs, and trees determine density and distribution of gorillas and chimpanzees in Western Equatorial Africa. Science Advances, 2018, 4, eaar2964.	10.3	86
14	Forest buffalo prefer clearings to closed-canopy forest in the primary forest of northern Congo. Oryx, 2002, 36, 81-86.	1.0	80
15	Poaching empties critical Central African wilderness of forest elephants. Current Biology, 2017, 27, R134-R135.	3.9	80
16	Swamp gorillas in northern Congo. African Journal of Ecology, 1995, 33, 285-290.	0.9	77
17	Vegetation dynamics drive segregation by body size in Galapagos tortoises migrating across altitudinal gradients. Journal of Animal Ecology, 2013, 82, 310-321.	2.8	71
18	Suite of simple metrics reveals common movement syndromes across vertebrate taxa. Movement Ecology, 2017, 5, 12.	2.8	67

#	Article	IF	CITATIONS
19	Developing fencing policies for dryland ecosystems. Journal of Applied Ecology, 2015, 52, 544-551.	4.0	64
20	Carbon stocks in central African forests enhanced by elephant disturbance. Nature Geoscience, 2019, 12, 725-729.	12.9	62
21	Biological Earth observation with animal sensors. Trends in Ecology and Evolution, 2022, 37, 293-298.	8.7	49
22	The spatial structure of hunter access determines the local abundance of forest elephants (Loxodonta africana cyclotis)., 2011, 21, 1296-1307.		48
23	Flexible characterization of animal movement pattern using net squared displacement and a latent state model. Movement Ecology, 2016, 4, 15.	2.8	48
24	Human footprint and protected areas shape elephant range across Africa. Current Biology, 2021, 31, 2437-2445.e4.	3.9	48
25	Fruit, Minerals, and Forest Elephant Trails: Do All Roads Lead to Rome?. Biotropica, 2004, 36, 392-401.	1.6	47
26	The Dominance of Introduced Plant Species in the Diets of Migratory Galapagos Tortoises Increases with Elevation on a Humanâ€Occupied Island. Biotropica, 2015, 47, 246-258.	1.6	41
27	Frugivory and seed dispersal in the Gal $ ilde{A}_i$ pagos: what is the state of the art?. Integrative Zoology, 2011, 6, 110-129.	2.6	38
28	Animal movement in the absence of predation: environmental drivers of movement strategies in a partial migration system. Oikos, 2017, 126, 1004-1019.	2.7	31
29	Applying network theory to animal movements to identify properties of landscape space use. Ecological Applications, 2018, 28, 854-864.	3.8	29
30	Plant species dispersed by Galapagos tortoises surf the wave of habitat suitability under anthropogenic climate change. PLoS ONE, 2017, 12, e0181333.	2.5	27
31	Digesta retention time in the $Gal\tilde{A}_i$ pagos tortoise (Chelonoidis nigra). Comparative Biochemistry and Physiology Part A, Molecular & amp; Integrative Physiology, 2011, 160, 493-497.	1.8	26
32	Benefits of the destinations, not costs of the journeys, shape partial migration patterns. Journal of Animal Ecology, 2017, 86, 972-982.	2.8	26
33	Migration triggers in a large herbivore: $Gal\tilde{A}_i$ pagos giant tortoises navigating resource gradients on volcanoes. Ecology, 2019, 100, e02658.	3.2	25
34	One size does not fit all: flexible models are required to understand animal movement across scales. Journal of Animal Ecology, 2011, 80, 1088-1096.	2.8	23
35	Seed production by <i>Gilbertiodendron dewevrei</i> in the Nouabalé-Ndoki National Park, Congo, and its implications for large mammals. Journal of Tropical Ecology, 1997, 13, 885-891.	1.1	21
36	Ecosystem implications of conserving endemic versus eradicating introduced large herbivores in the Galapagos Archipelago. Biological Conservation, 2017, 209, 1-10.	4.1	18

#	Article	IF	Citations
37	Movement Patterns and Spatial Relationships Among African Forest Elephants. Biotropica, 2012, 44, 445-448.	1.6	17
38	Fruit, Minerals, and Forest Elephant Trails: Do All Roads Lead to Rome?1. Biotropica, 2004, 36, 392.	1.6	12
39	Antimicrobial resistance genes present in the faecal microbiota of freeâ€living Galapagos tortoises () Tj ETQq1 1	0.784314 2.2	rgBT /Over
40	Allometric and temporal scaling of movement characteristics in Galapagos tortoises. Journal of Animal Ecology, 2016, 85, 1171-1181.	2.8	9
41	Identifying Shared Strategies and Solutions to the Human–Giant Tortoise Interactions in Santa Cruz, Galapagos: A Nominal Group Technique Application. Sustainability, 2019, 11, 2937.	3.2	8
42	Movement ecology. , 2021, , 261-279.		5
43	Mortality in Three-Toed Box Turtles (Terrapene mexicana triunguis) at Two Sites in Missouri. Frontiers in Veterinary Science, 2019, 6, 412.	2.2	4
44	FIELD ANESTHESIA AND GONADAL MORPHOLOGY OF IMMATURE WESTERN SANTA CRUZ TORTOISES (CHELONOIDIS PORTERI). Journal of Zoo and Wildlife Medicine, 2021, 51, 848-855.	0.6	4
45	A greener future for the Galapagos: forecasting ecosystem productivity by finding climate analogs in time. Ecosphere, 2021, 12, .	2.2	4
46	Diet, behavior, and activity patterns., 2021,, 207-239.		3
47	Body size, sex and high philopatry influence the use of agricultural land by Galapagos giant tortoises. Oryx, 0, , 1-10.	1.0	3
48	Sharing land with giants: Habitat preferences of Galapagos tortoises on farms. Global Ecology and Conservation, 2022, 37, e02171.	2.1	3
49	Thermoregulation. , 2021, , 175-205.		2
50	Role in ecosystems. , 2021, , 299-315.		2