
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11808887/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 1985, 22, 160-174.	1.8	7,690
2	Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. Journal of Molecular Evolution, 1989, 29, 170-179.	1.8	3,224
3	CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics, 2001, 17, 1246-1247.	4.1	1,958
4	Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12246-12251.	7.1	1,074
5	Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. Journal of Molecular Evolution, 1990, 31, 151-160.	1.8	789
6	Gene transfer to the nucleus and the evolution of chloroplasts. Nature, 1998, 393, 162-165.	27.8	717
7	The yak genome and adaptation to life at high altitude. Nature Genetics, 2012, 44, 946-949.	21.4	708
8	Model of amino acid substitution in proteins encoded by mitochondrial DNA. Journal of Molecular Evolution, 1996, 42, 459-468.	1.8	487
9	Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3491-3500.	2.6	449
10	Towards Resolving the Interordinal Relationships of Placental Mammals. Systematic Biology, 1999, 48, 1-5.	5.6	306
11	Interordinal Relationships of Birds and Other Reptiles Based on Whole Mitochondrial Genomes. Systematic Biology, 1999, 48, 138-152.	5.6	253
12	Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: Instability of a tree based on a single gene. Journal of Molecular Evolution, 1994, 39, 519-27.	1.8	239
13	Ribosomal RNA trees misleading?. Nature, 1993, 361, 23-23.	27.8	230
14	On the maximum likelihood method in molecular phylogenetics. Journal of Molecular Evolution, 1991, 32, 443-445.	1.8	221
15	Conflict Among Individual Mitochondrial Proteins in Resolving the Phylogeny of Eutherian Orders. Journal of Molecular Evolution, 1998, 47, 307-322.	1.8	208
16	Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9929-9934.	7.1	207
17	Plastid Genome Phylogeny and a Model of Amino Acid Substitution for Proteins Encoded by Chloroplast DNA. Journal of Molecular Evolution, 2000, 50, 348-358.	1.8	204
18	Toward a more accurate time scale for the human mitochondrial DNA tree. Journal of Molecular Evolution, 1993, 37, 347-354.	1.8	190

#	Article	IF	CITATIONS
19	Molecular clock of silent substitution: At least six-fold preponderance of silent changes in mitochondrial genes over those in nuclear genes. Journal of Molecular Evolution, 1982, 19, 28-35.	1.8	174
20	Phylogenetic relationships among eukaryotic kingdoms inferred from ribosomal RNA sequences. Journal of Molecular Evolution, 1985, 22, 32-38.	1.8	171
21	Using Novel Phylogenetic Methods to Evaluate Mammalian mtDNA, Including Amino Acid-Invariant Sites-LogDet plus Site Stripping, to Detect Internal Conflicts in the Data, with Special Reference to the Positions of Hedgehog, Armadillo, and Elephant. Systematic Biology, 1999, 48, 31-53.	5.6	153
22	Relative Efficiencies of the Maximum Likelihood, Maximum Parsimony, and Neighbor-Joining Methods for Estimating Protein Phylogeny. Molecular Phylogenetics and Evolution, 1993, 2, 1-5.	2.7	149
23	Early branchings in the evolution of eukaryotes: Ancient divergence of entamoeba that lacks mitochondria revealed by protein sequence data. Journal of Molecular Evolution, 1993, 36, 380-8.	1.8	147
24	Mitochondrial Phylogenetics and Evolution of Mysticete Whales. Systematic Biology, 2005, 54, 77-90.	5.6	143
25	Man's place in Hominoidea as inferred from molecular clocks of DNA. Journal of Molecular Evolution, 1987, 26, 132-147.	1.8	142
26	Combining Multiple Data Sets in a Likelihood Analysis: Which Models are the Best?. Molecular Biology and Evolution, 2002, 19, 2294-2307.	8.9	136
27	Time scale of eutherian evolution estimated without assuming a constant rate of molecular evolution Genes and Genetic Systems, 2003, 78, 267-283.	0.7	134
28	Maximum Likelihood Analysis of the Complete Mitochondrial Genomes of Eutherians and a Reevaluation of the Phylogeny of Bats and Insectivores. Journal of Molecular Evolution, 2001, 53, 508-516.	1.8	128
29	[34] Converting distance to time: Application to human evolution. Methods in Enzymology, 1990, 183, 550-570.	1.0	125
30	The Phylogenetic Position of Red Algae Revealed by Multiple Nuclear Genes from Mitochondria-Containing Eukaryotes and an Alternative Hypothesis on the Origin of Plastids. Journal of Molecular Evolution, 2003, 56, 485-497.	1.8	123
31	Phylogenomics and Morphology of Extinct Paleognaths Reveal the Origin and Evolution of the Ratites. Current Biology, 2017, 27, 68-77.	3.9	123
32	Protein phylogeny of translation elongation factor EF-1α suggests microsporidians are extremely ancient eukaryotes. Journal of Molecular Evolution, 1996, 42, 257-263.	1.8	110
33	Phylogeny, Recombination, and Mechanisms of Stepwise Mitochondrial Genome Reorganization in Mantellid Frogs from Madagascar. Molecular Biology and Evolution, 2008, 25, 874-891.	8.9	108
34	Interordinal relationships and timescale of eutherian evolution as inferred from mitochondrial genome data. Gene, 2000, 259, 149-158.	2.2	107
35	Tempo and mode of mitochondrial DNA evolution in vertebrates at the amino acid sequence level: Rapid evolution in warm-blooded vertebrates. Journal of Molecular Evolution, 1993, 36, 270-281.	1.8	106
36	Relationships between BK virus lineages and human populations. Microbes and Infection, 2007, 9, 204-213.	1.9	106

#	Article	IF	CITATIONS
37	Molecular phylogeny and evolution of prosimians based on complete sequences of mitochondrial DNAs. Gene, 2009, 441, 53-66.	2.2	105
38	Assessing the Cretaceous Superordinal Divergence Times within Birds and Placental Mammals by Using Whole Mitochondrial Protein Sequences and an Extended Statistical Framework. Systematic Biology, 1999, 48, 119-137.	5.6	104
39	Complete Nucleotide Sequence and Gene Rearrangement of the Mitochondrial Genome of the Japanese Pond Frog Rana nigromaculata Genes and Genetic Systems, 2001, 76, 311-325.	0.7	99
40	Intraspecific phylogeny and geographical variation of six species of northeastern Asiatic Sorex shrews based on the mitochondrial cytochrome b sequences. Molecular Ecology, 2001, 10, 2199-2213.	3.9	99
41	A new molecular clock of mitochondrial DNA and the evolution of hominoids Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1984, 60, 95-98.	3.8	98
42	Time of the deepest root for polymorphism in human mitochondrial DNA. Journal of Molecular Evolution, 1991, 32, 37-42.	1.8	96
43	Domestication Relaxed Selective Constraints on the Yak Mitochondrial Genome. Molecular Biology and Evolution, 2011, 28, 1553-1556.	8.9	93
44	Phylogenetic Position of Blastocystis hominis and of Stramenopiles Inferred from Multiple Molecular Sequence Data. Journal of Eukaryotic Microbiology, 2002, 49, 42-53.	1.7	92
45	Geometrical models of territory I. Models for synchronous and asynchronous settlement of territories. Journal of Theoretical Biology, 1980, 82, 477-496.	1.7	91
46	Appropriate Likelihood Ratio Tests and Marginal Distributions for Evolutionary Tree Models with Constraints on Parameters. Molecular Biology and Evolution, 2000, 17, 798-803.	8.9	91
47	Extensive mitochondrial gene arrangements in coleoid Cephalopoda and their phylogenetic implications. Molecular Phylogenetics and Evolution, 2006, 38, 648-658.	2.7	91
48	Improved dating of the human/chimpanzee separation in the mitochondrial DNA tree: Heterogeneity among amino acid sites. Journal of Molecular Evolution, 1995, 40, 622-628.	1.8	87
49	Phylogenetic position of turtles among amniotes: evidence from mitochondrial and nuclear genes. Gene, 2000, 259, 139-148.	2.2	87
50	Effects of Character Weighting and Species Sampling on Phylogeny Reconstruction: A Case Study Based on DNA Sequence Data in Cetaceans. Genetics, 1996, 144, 1817-1833.	2.9	85
51	Mammalian Evolution: Timing and Implications from Using the LogDeterminant Transform for Proteins of Differing Amino Acid Composition. Systematic Biology, 1999, 48, 76-93.	5.6	84
52	Balaenoptera omurai is a newly discovered baleen whale that represents an ancient evolutionary lineage. Molecular Phylogenetics and Evolution, 2006, 41, 40-52.	2.7	84
53	Radiation and speciation of pelagic organisms during periods of global warming: the case of the common minke whale, Balaenoptera acutorostrata. Molecular Ecology, 2007, 16, 1481-1495.	3.9	83
54	Rooting the eutherian tree: the power and pitfalls of phylogenomics. Genome Biology, 2007, 8, R199.	9.6	82

#	Article	IF	CITATIONS
55	The Position of Gnetales among Seed Plants: Overcoming Pitfalls of Chloroplast Phylogenomics. Molecular Biology and Evolution, 2010, 27, 2855-2863.	8.9	82
56	The platypus put in its place. Nature, 1997, 387, 549-550.	27.8	81
57	Ultrastructure of the Dermal Chromatophores in a Lizard (Scincidae: Plestiodon latiscutatus) with Conspicuous Body and Tail Coloration. Zoological Science, 2006, 23, 793-799.	0.7	79
58	The monophyletic origin of sea lions and fur seals (Carnivora; Otariidae) in the Southern Hemisphere. Gene, 2009, 441, 89-99.	2.2	79
59	Root of the Eukaryota Tree as Inferred from Combined Maximum Likelihood Analyses of Multiple Molecular Sequence Data. Molecular Biology and Evolution, 2005, 22, 409-420.	8.9	78
60	Estimation of branching dates among primates by molecular clocks of nuclear DNA which slowed down in Hominoidea. Journal of Human Evolution, 1989, 18, 461-476.	2.6	76
61	Evolution of RNA polymerases and branching patterns of the three major groups of archaebacteria. Journal of Molecular Evolution, 1991, 32, 70-78.	1.8	76
62	Mitochondrial DNA evolution in primates: Transition rate has been extremely low in the lemur. Journal of Molecular Evolution, 1990, 31, 113-121.	1.8	75
63	Evolution of Human Polyomavirus JC: Implications for the Population History of Humans. Journal of Molecular Evolution, 2002, 54, 285-297.	1.8	75
64	The status of the Japanese and East Asian bats of the genus Myotis (Vespertilionidae) based on mitochondrial sequences. Molecular Phylogenetics and Evolution, 2003, 28, 297-307.	2.7	74
65	The Origin of Chlorarachniophyte Plastids, as Inferred from Phylogenetic Comparisons of Amino Acid Sequences of EF-Tu. Journal of Molecular Evolution, 1997, 45, 682-687.	1.8	72
66	Confidence Limits of the Maximum-Likelihood Estimate of the Hominoid three from Mitochondrial-DNA Sequences. Evolution; International Journal of Organic Evolution, 1989, 43, 672.	2.3	71
67	CONFIDENCE LIMITS ON THE MAXIMUM-LIKELIHOOD ESTIMATE OF THE HOMINOID TREE FROM MITOCHONDRIAL-DNA SEQUENCES. Evolution; International Journal of Organic Evolution, 1989, 43, 672-677.	2.3	71
68	Secondary structure of MS2 phage RNA and bias in code word usage. Nucleic Acids Research, 1979, 7, 2073-2079.	14.5	69
69	Heterogeneity of tempo and mode of mitochondrial DNA evolution among mammalian orders Japanese Journal of Genetics, 1989, 64, 243-258.	1.0	68
70	Close phylogenetic relationship between vestimentifera (tube worms) and annelida revealed by the amino acid sequence of elongation factor-l?. Journal of Molecular Evolution, 1993, 37, 66-70.	1.8	68
71	Molecular phylogenetic study on the origin and evolution of Mustelidae. Gene, 2007, 396, 1-12.	2.2	66
72	Phylogeographical analyses of domestic and wild yaks based on mitochondrial DNA: new data and reappraisal. Journal of Biogeography, 2010, 37, 2332-2344.	3.0	66

#	Article	IF	CITATIONS
73	Complete Nucleotide Sequences of the Genes Encoding Translation Elongation Factors 1Â and 2 from a microsporidian parasite, Glugea plecoglossi: Implications for the Deepest Branching of Eukaryotes. Journal of Biochemistry, 1996, 120, 1095-1103.	1.7	63
74	Monophyletic Origin of the Order Chiroptera and Its Phylogenetic Position Among Mammalia, as Inferred from the Complete Sequence of the Mitochondrial DNA of a Japanese Megabat, the Ryukyu Flying Fox (Pteropus dasymallus). Journal of Molecular Evolution, 2000, 51, 318-328.	1.8	62
75	Differentiation of Oocyte- and Somatic-Type 5S rRNAs in Animals1. Journal of Biochemistry, 1986, 100, 369-374.	1.7	61
76	Mitochondrial phylogeny of hedgehogs and monophyly of Eulipotyphla. Molecular Phylogenetics and Evolution, 2003, 28, 276-284.	2.7	61
77	Intra- and Interfamily Relationships of Vespertilionidae Inferred by Various Molecular Markers Including SINE Insertion Data. Journal of Molecular Evolution, 2002, 55, 284-301.	1.8	60
78	Estimation of Effective Population Size of HIV-1 Within a Host: A Pseudomaximum-Likelihood Approach. Genetics, 2002, 160, 1283-1293.	2.9	59
79	On the pattern of space division by territories. Annals of the Institute of Statistical Mathematics, 1976, 28, 509-519.	0.8	56
80	Phylogeographic and Demographic Analysis of the Asian Black Bear (Ursus thibetanus) Based on Mitochondrial DNA. PLoS ONE, 2015, 10, e0136398.	2.5	56
81	Phylogeny of Primary Photosynthetic Eukaryotes as Deduced from Slowly Evolving Nuclear Genes. Molecular Biology and Evolution, 2007, 24, 1592-1595.	8.9	55
82	High altitude adaptation of the schizothoracine fishes (Cyprinidae) revealed by the mitochondrial genome analyses. Gene, 2013, 517, 169-178.	2.2	55
83	Episodic Evolution and Adaptation of Chloroplast Genomes in Ancestral Grasses. PLoS ONE, 2009, 4, e5297.	2.5	53
84	Novel phylogeny of whales supported by total molecular evidence. Journal of Molecular Evolution, 1997, 44, S117-S120.	1.8	52
85	Relationship among coelacanths, lungfishes, and tetrapods: A phylogenetic analysis based on mitochondrial cytochrome oxidase I gene sequences. Journal of Molecular Evolution, 1994, 38, 602-9.	1.8	51
86	Complete nucleotide sequence of the mitochondrial genome of a Malagasy poison frog Mantella madagascariensis: Evolutionary implications on mitochondrial genomes of higher anuran groups. Molecular Phylogenetics and Evolution, 2006, 39, 223-236.	2.7	51
87	A viral sampling design for testing the molecular clock and for estimating evolutionary rates and divergence times. Bioinformatics, 2002, 18, 115-123.	4.1	49
88	Afrotherian phylogeny as inferred from complete mitochondrial genomes. Molecular Phylogenetics and Evolution, 2003, 28, 253-260.	2.7	49
89	Model of Amino Acid Substitution in Proteins Encoded by Mitochondrial DNA. Journal of Molecular Evolution, 1996, 42, 459-468.	1.8	49
90	Phylogenetic relation of lungfish indicated by the amino acid sequence of myelin DM20. Molecular Brain Research, 2000, 80, 256-259.	2.3	48

#	Article	IF	CITATIONS
91	Topological incongruence between nuclear and chloroplast DNA trees suggesting hybridization in the urophyllum group of the genus Fagopyrum (Polygonaceae). Genes and Genetic Systems, 2003, 78, 139-153.	0.7	48
92	Evolution of BK Virus Based on Complete Genome Data. Journal of Molecular Evolution, 2006, 63, 341-352.	1.8	48
93	Domestication Process of the Goat Revealed by an Analysis of the Nearly Complete Mitochondrial Protein-Encoding Genes. PLoS ONE, 2013, 8, e67775.	2.5	48
94	On the antisymmetry of the amino acid code table. Origins of Life and Evolution of Biospheres, 1980, 10, 265-270.	0.6	47
95	Model dependence of the phylogenetic inference: Relationship among Carnivores, Perissodactyls and Cetartiodactyls as inferred from mitochondrial genome sequences Genes and Genetic Systems, 1999, 74, 211-217.	0.7	46
96	Instability of Quartet Analyses of Molecular Sequence Data by the Maximum Likelihood Method: The Cetacea/Artiodactyla Relationships. Molecular Phylogenetics and Evolution, 1996, 6, 72-76.	2.7	43
97	Role of a seasonally specialist bird Zosterops japonica on pollen transfer and reproductive success of Camellia japonica in a temperate area. Plant Species Biology, 2004, 19, 197-201.	1.0	43
98	The Plasmodium Apicoplast Genome: Conserved Structure and Close Relationship of P. ovale to Rodent Malaria Parasites. Molecular Biology and Evolution, 2012, 29, 2095-2099.	8.9	42
99	Rodent polyphyly?. Nature, 1992, 355, 595-595.	27.8	41
100	Phylogenetic Position of the Mitochondrion-Lacking Protozoan Trichomonas tenax, Based on Amino Acid Sequences of Elongation Factors $1\hat{l}\pm$ and 2. Journal of Molecular Evolution, 1997, 44, 98-105.	1.8	41
101	Complete nucleotide sequence and gene arrangement of the mitochondrial genome of the crab-eating frog Fejervarya cancrivora and evolutionary implications. Gene, 2009, 441, 148-155.	2.2	41
102	Amino acid substitution of proteins coded for in mitochondrial DNA during mammalian evolution Japanese Journal of Genetics, 1992, 67, 187-197.	1.0	38
103	Evolution of Pacific Ocean and the Sea of Japan populations of the gobiid species, Pterogobius elapoides and Pterogobius zonoleucus, based on molecular and morphological analyses. Gene, 2008, 427, 7-18.	2.2	38
104	JC Virus Strains Indigenous to Northeastern Siberians and Canadian Inuits Are Unique But Evolutionally Related to Those Distributed Throughout Europe and Mediterranean Areas. Journal of Molecular Evolution, 2002, 55, 322-335.	1.8	37
105	Phylogeny and molecular evolution in primates Japanese Journal of Genetics, 1990, 65, 243-266.	1.0	36
106	Eubacterial origin of nuclear genes for chloroplast and cytosolic glucose-6-phosphate isomerase from spinach: sampling eubacterial gene diversity in eukaryotic chromosomes through symbiosis. Gene, 1998, 214, 205-213.	2.2	35
107	Consistency of SINE Insertion Topology and Flanking Sequence Tree: Quantifying Relationships Among Cetartiodactyls. Molecular Biology and Evolution, 2000, 17, 1417-1424.	8.9	35
108	The Phylogenetic Position of the Pelobiont Mastigamoeba balamuthi Based on Sequences of rDNA and Translation Elongation Factors EF-1alpha and EF-2. Journal of Eukaryotic Microbiology, 2002, 49, 1-10.	1.7	35

#	Article	IF	CITATIONS
109	Phylogeny mandalas for illustrating the Tree of Life. Molecular Phylogenetics and Evolution, 2017, 117, 168-178.	2.7	34
110	Phylogenetic Relationships Among JC Virus Strains in Japanese/Koreans and Native Americans Speaking Amerind or Na-Dene. Journal of Molecular Evolution, 2003, 56, 18-27.	1.8	33
111	The genome and transcriptome of Trichormus sp. NMC-1: insights into adaptation to extreme environments on the Qinghai-Tibet Plateau. Scientific Reports, 2016, 6, 29404.	3.3	33
112	Phylogenetic place of kinetoplastid protozoa inferred from a protein phylogeny of elongation factor 1 α. Molecular and Biochemical Parasitology, 1995, 70, 181-185.	1.1	30
113	MAXIMUM LIKELIHOOD METHOD OF PHYLOGENETIC INFERENCE FROM DNA SEQUENCE DATA. Japanese Journal of Biometrics, 1984, 5, 1-7.	0.0	30
114	Early evolution of eukaryotes inferred from protein phylogenies of translation elongation factors 11± and 2. Archiv Für Protistenkunde, 1997, 148, 287-295.	0.8	29
115	New candidate species most closely related to penguins. Gene, 2006, 378, 65-73.	2.2	29
116	Phylogeny and classification of hominoidea as inferred from DNA sequence data Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1984, 60, 389-392.	3.8	28
117	Eutherian phylogeny as inferred from mitochondrial DNA sequence data Japanese Journal of Genetics, 1994, 69, 455-472.	1.0	26
118	Phylogenetic position of Blastocystis hominis that contains cytochrome-free mitochondria, inferred from the protein phylogeny of elongation factor 1α. Molecular and Biochemical Parasitology, 1996, 77, 241-245.	1.1	25
119	Phylogenetic Analysis of Diprotodontian Marsupials Based on Complete Mitochondrial Genomes. Genes and Genetic Systems, 2006, 81, 181-191.	0.7	25
120	Phylogeny of Asian primate malaria parasites inferred from apicoplast genome-encoded genes with special emphasis on the positions of Plasmodium vivax and P. fragile. Gene, 2010, 450, 32-38.	2.2	25
121	Stability of Mitochondrial Membrane Proteins in Terrestrial Vertebrates Predicts Aerobic Capacity and Longevity. Genome Biology and Evolution, 2011, 3, 1233-1244.	2.5	23
122	Determination of a complete lemur mitochondrial genome from feces. Mammal Study, 2007, 32, 7-16.	0.6	22
123	The genetic code and the entropy of protein. Mathematical Biosciences, 1975, 24, 169-182.	1.9	20
124	Was the universal common ancestry proved?. Nature, 2010, 468, E9-E9.	27.8	20
125	The giant panda is closer to a bear, judged by ?- and ?-hemoglobin sequences. Journal of Molecular Evolution, 1993, 36, 282-289.	1.8	19
126	Valence Bond Study of the Hydrogen Bond. III. Formation and Migration of Ionic Defects in Water and Ice. Journal of the Physical Society of Japan, 1970, 29, 1329-1334.	1.6	18

#	Article	IF	CITATIONS
127	Cloning and sequencing of a gene encoding 16S ribosomal RNA from a novel hyperthermophilic archaebacterium NC12. Gene, 1996, 180, 183-187.	2.2	18
128	Impacts of river alteration for flood control on freshwater turtle populations. Landscape and Ecological Engineering, 2012, 8, 9-16.	1.5	18
129	Snake and Bird Predation Drive the Repeated Convergent Evolution of Correlated Life History Traits and Phenotype in the Izu Island Scincid Lizard (Plestiodon latiscutatus). PLoS ONE, 2014, 9, e92233.	2.5	18
130	Phylogenetic place of a mitochondria-lacking protozoan, Entamoeba histolytica, inferred from amino acid sequences of elongation factor 2 Japanese Journal of Genetics, 1994, 69, 119-135.	1.0	17
131	Detecting excess radical replacements in phylogenetic trees. Gene, 2003, 319, 127-135.	2.2	17
132	Cyanobacterial Genes Transmitted to the Nucleus Before Divergence of Red Algae in the Chromista. Journal of Molecular Evolution, 2004, 59, 103-13.	1.8	17
133	Adaptive Threonine Increase in Transmembrane Regions of Mitochondrial Proteins in Higher Primates. PLoS ONE, 2008, 3, e3343.	2.5	17
134	Blue, Black, and Stripes: Evolution and Development of Color Production and Pattern Formation in Lizards and Snakes. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	16
135	Evolutionary implications of error amplification in the self-replicating and protein-synthesizing machinery. Journal of Molecular Evolution, 1984, 20, 77-85.	1.8	15
136	Polyphyletic origins of schizothoracine fish (Cyprinidae, Osteichthyes) and adaptive evolution in their mitochondrial genomes. Genes and Genetic Systems, 2014, 89, 187-191.	0.7	15
137	Polymorphism and evolution of ribosomal DNA in tea (Camellia sinensis, Theaceae). Molecular Phylogenetics and Evolution, 2015, 89, 63-72.	2.7	15
138	Comment on "Nuclear Genomic Sequences Reveal that Polar Bears Are an Old and Distinct Bear Lineage― Science, 2013, 339, 1522-1522.	12.6	14
139	Entropy of the genetic information and evolution. Origins of Life and Evolution of Biospheres, 1975, 6, 219-227.	0.6	13
140	Gene structure and amino acid sequence of Latimeria chalumnae (coelacanth) myelin DM20: phylogenetic relation of the fish. Neurochemical Research, 1999, 24, 867-873.	3.3	13
141	A Close Relationship of Chiroptera with Eulipotyphla (Core Insectivora) Suggested by Four Mitochondrial Genes. Zoological Science, 2000, 17, 1327-1332.	0.7	13
142	Detecting evolutionary rate heterogeneity among mangroves and their close terrestrial relatives. Ecology Letters, 2002, 5, 427-432.	6.4	12
143	The phylogenetic relationships of insectivores with special reference to the lesser hedgehog tenrec as inferred from the complete sequence of their mitochondrial genome Genes and Genetic Systems, 2003, 78, 107-112.	0.7	12
144	Molecular Phylogeny and Evolution in Primates. Primatology Monographs, 2012, 65, 243-267.	0.8	12

#	Article	IF	CITATIONS
145	Some Problems in Proving the Existence of the Universal Common Ancestor of Life on Earth. Scientific World Journal, The, 2012, 2012, 1-5.	2.1	12
146	Nucleotide sequences of 5S rRNAs from spongeHalichondria japonicaand tunicateHalocynthia roretziand their phylogenetic positions. Nucleic Acids Research, 1983, 11, 1969-1974.	14.5	11
147	Close evolutionary relatedness of archaebacteria with eukaryotes Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1990, 66, 63-67.	3.8	11
148	Chronology of the extant African elephant species and case study of the species identification of the small African elephant with the molecular phylogenetic method. Gene, 2009, 441, 176-186.	2.2	11
149	Embryonic developmental process governing the conspicuousness of body stripes and blue tail coloration in the lizard <i>Plestiodon latiscutatus</i> . Evolution & Development, 2017, 19, 29-39.	2.0	11
150	Valence Bond Study of the Hydrogen Bond. I. Journal of the Physical Society of Japan, 1969, 27, 999-1008.	1.6	11
151	Close evolutionary relatedness of archaebacteria, Methanococcus and Halobacterium, to eukaryotes demonstrated by composite phylogenetic trees of elongation factors EF-Tu and EF-G: Eocyte tree is unlikely Japanese Journal of Genetics, 1990, 65, 109-114.	1.0	10
152	Pigment cell mechanism of postembryonic stripe pattern formation in the Japanese fourâ€lined snake. Journal of Morphology, 2016, 277, 196-203.	1.2	9
153	Developmental mechanisms of longitudinal stripes in the <scp>J</scp> apanese fourâ€ined snake. Journal of Morphology, 2018, 279, 27-36.	1.2	9
154	Evolution of Archaebacteria: Phylogenetic Relationships Among Archaebacteria, Eubacteria, and Eukaryotes. , 1991, , 337-351.		9
155	Comparison of pollination characteristics between the insular shrub <i>Clerodendrum izuinsulare</i> and its widespread congener <i>C.â€∫trichotomum</i> . Plant Species Biology, 2014, 29, 73-84.	1.0	8
156	Importance of synonymous substitutions under dense taxon sampling and appropriate modeling in reconstructing the mitogenomic tree of Eutheria. Genes and Genetic Systems, 2014, 89, 237-251.	0.7	8
157	Cretaceous origin of giant rhinoceros beetles (Dynastini; Coleoptera) and correlation of their evolution with the Pangean breakup. Genes and Genetic Systems, 2016, 91, 209-215.	0.7	8
158	Speciation of two gobioid species, Pterogobius elapoides and Pterogobius zonoleucus revealed by multi-locus nuclear and mitochondrial DNA analyses. Gene, 2016, 576, 593-602.	2.2	8
159	Molecular phylogeny and man's place in Hominoidea Jinruigaku Zasshi = the Journal of the Anthropological Society of Nihon, 1991, 99, 49-61.	0.2	8
160	Distribution of hydrogen bond angles in molecular crystals. Nature, 1975, 254, 212-212.	27.8	6
161	Iridophore- and Xanthophore-Deficient Melanistic Color Variant of the LizardPlestiodon latiscutatus. Herpetologica, 2016, 72, 189-195.	0.4	6
162	Light reflection from crystal platelets in iridophores determines green or brown skin coloration in Takydromus lizards. Zoology, 2017, 121, 83-90.	1.2	6

#	Article	IF	CITATIONS
163	Predator presence and recent climatic warming raise body temperatures of island lizards. Ecology Letters, 2021, 24, 533-542.	6.4	6
164	Phylogenetic Analysis of JC Virus DNAs Detected in Ainus: An Attempt to Elucidate the Origin and Diversity of the Ainu. Anthropological Science, 2003, 111, 19-34.	0.1	5
165	Adaptive evolution of chloroplast genomes in ancestral grasses. Plant Signaling and Behavior, 2009, 4, 623-624.	2.4	5
166	Distribution of Eimeria uekii and Eimeria raichoi in cage protection environments for the conservation of Japanese rock ptarmigans (Lagopus muta japonica) in the Japanese Alps. International Journal for Parasitology: Parasites and Wildlife, 2021, 15, 225-230.	1.5	5
167	Ancestral Polymorphisms and Sex-Biased Migration Shaped the Demographic History of Brown Bears and Polar Bears. PLoS ONE, 2013, 8, e78813.	2.5	4
168	Mitochondrial determinants of mammalian longevity. Open Biology, 2017, 7, 170083.	3.6	4
169	Parasitic development in intestines and oocyst shedding patterns for infection by Eimeria uekii and Eimeria raichoi in Japanese rock ptarmigans, Lagopus muta japonica, protected by cages in the Southern Japanese Alps. International Journal for Parasitology: Parasites and Wildlife, 2020, 12, 19-24.	1.5	4
170	Distribution and Status of Gray-faced Buzzard Eagle Butastur indicus on the Northern Izu Islands, Japan. Japanese Journal of Ornithology, 1996, 45, 83-89.	0.1	4
171	Early evolution of eukaryotes inferred from genome data. International Congress Series, 2002, 1246, 209-215.	0.2	3
172	Assessing the Uncertainty in Phylogenetic Inference. , 2005, , 463-493.		3
173	Extreme nearly neutral evolution in mitochondrial genomes of laboratory mouse strains. Gene, 2014, 534, 444-448.	2.2	3
174	The Origin And The Evolution Of Cellular Organelles. , 1983, , 199-210.		2
175	A Chemical-Distance-Based Test for Positive Darwinian Selection. Lecture Notes in Computer Science, 2001, , 142-155.	1.3	2
176	A Correction to our Paper "Valence Bond Study of the Hydrogen Bond. I.― Journal of the Physical Society of Japan, 1970, 28, 275-275.	1.6	2
177	Molecular Orbital Study of the Bent Hydrogen Bond. CNDO/2 Calculation for Dimeric H2O. Journal of the Physical Society of Japan, 1970, 28, 266-266.	1.6	1
178	Red-spotted masu salmon (Oncorhynchus masou ishikawae) with unique jaw morphology collected from central Japan. Ichthyological Research, 2009, 56, 208-209.	0.8	1
179	Phylogeny mandalas of birds using the lithographs of John Gould's folio bird books. Molecular Phylogenetics and Evolution, 2017, 117, 141-149.	2.7	1
180	International symposium on the origin of mammalian orders July 21–25, 1998. Journal of Molecular Evolution, 1998, 46, 498-498.	1.8	0

MASAMI HASEGAWA

#	Article	IF	CITATIONS
181	A Preliminary Study of the Morphological and Ecological Characteristics of Plestiodon japonicus (Scincidae, Squamata) on the Danjo Islands, Western Japan. Current Herpetology, 2021, 40, .	0.5	0
182	Eutherian phylogeny as inferred from mitochondrial DNA sequence data. Genes and Genetic Systems, 1994, 69, 455-472.	0.7	0
183	Inference of Evolutionary Trees from DNA and Protein Sequence Data. , 1994, , 241-248.		Ο
184	Phylogenetic place of a mitochondria-lacking protozoan, Entamoeba histolytica, inferred from amino acid sequences of elongation factor 2. Genes and Genetic Systems, 1994, 69, 119-135.	0.7	0
185	Effect of Electron Correlation on the Hydrogen Bond. Journal of the Physical Society of Japan, 1971, 31, 1290-1290.	1.6	0