Edy Tonnizam Mohamad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11806617/publications.pdf

Version: 2024-02-01

55 papers

3,845 citations

34 h-index 52 g-index

57 all docs

57 docs citations

57 times ranked

1763 citing authors

#	Article	IF	CITATIONS
1	Proposing several hybrid PSO-extreme learning machine techniques to predict TBM performance. Engineering With Computers, 2022, 38, 3811-3827.	6.1	34
2	Rock mass classification for the assessment of blastability in tropically weathered igneous rocks. , 2022, , 255-283.		0
3	Recent Developments in Machine Learning and Flyrock Prediction. Lecture Notes in Civil Engineering, 2022, , 597-612.	0.4	1
4	Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimization. Underground Space (China), 2021, 6, 506-515.	7.5	129
5	Application of Tree-Based Predictive Models to Forecast Air Overpressure Induced by Mine Blasting. Natural Resources Research, 2021, 30, 1865-1887.	4.7	32
6	Strength evaluation of granite block samples with different predictive models. Engineering With Computers, 2021, 37, 891-908.	6.1	18
7	Optimal ELM–Harris Hawks Optimization and ELM–Grasshopper Optimization Models to Forecast Peak Particle Velocity Resulting from Mine Blasting. Natural Resources Research, 2021, 30, 2647-2662.	4.7	38
8	Prediction of TBM performance in fresh through weathered granite using empirical and statistical approaches. Tunnelling and Underground Space Technology, 2021, 118, 104183.	6.2	39
9	Prediction of flyrock distance induced by mine blasting using a novel Harris Hawks optimization-based multi-layer perceptron neural network. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13, 1413-1427.	8.1	39
10	GEOSPATIAL APPROACH FOR GEOLOGICAL INVESTIGATION AT DISTRICT OF MERSING. Journal of Information System and Technology Management, 2021, 6, 174-185.	0.1	0
11	The effects of ABC, ICA, and PSO optimization techniques on prediction of ripping production. Engineering With Computers, 2020, 36, 1355-1370.	6.1	24
12	The use of new intelligent techniques in designing retaining walls. Engineering With Computers, 2020, 36, 283-294.	6.1	61
13	The effects of particle swarm optimisation and genetic algorithm on ANN results in predicting pile bearing capacity. International Journal of Hydromechatronics, 2020, 3, 69.	2.3	43
14	Machine Learning Classifiers for Modeling Soil Characteristics by Geophysics Investigations: A Comparative Study. Applied Sciences (Switzerland), 2020, 10, 5734.	2.5	9
15	Development of fuzzy-GMDH model optimized by GSA to predict rock tensile strength based on experimental datasets. Neural Computing and Applications, 2020, 32, 14047-14067.	5.6	31
16	A Novel Intelligent ELM-BBO Technique for Predicting Distance of Mine Blasting-Induced Flyrock. Natural Resources Research, 2020, 29, 4103-4120.	4.7	56
17	Intelligence Prediction of Some Selected Environmental Issues of Blasting: A Review. Open Construction and Building Technology Journal, 2020, 14, 298-308.	0.7	27
18	Predicting tunnel boring machine performance through a new model based on the group method of data handling. Bulletin of Engineering Geology and the Environment, 2019, 78, 3799-3813.	3.5	114

#	Article	lF	Citations
19	A combination of artificial bee colony and neural network for approximating the safety factor of retaining walls. Engineering With Computers, 2019, 35, 647-658.	6.1	78
20	A new hybrid method for predicting ripping production in different weathering zones through in situ tests. Measurement: Journal of the International Measurement Confederation, 2019, 147, 106826.	5.0	42
21	Estimating the friction angle of black shale core specimens with hybrid-ANN approaches. Measurement: Journal of the International Measurement Confederation, 2019, 145, 744-755.	5.0	40
22	Application of deep neural networks in predicting the penetration rate of tunnel boring machines. Bulletin of Engineering Geology and the Environment, 2019, 78, 6347-6360.	3.5	108
23	Estimating and optimizing safety factors of retaining wall through neural network and bee colony techniques. Engineering With Computers, 2019, 35, 945-954.	6.1	62
24	Prediction of rock interlocking by developing two hybrid models based on GA and fuzzy system. Engineering With Computers, 2019, 35, 1419-1430.	6.1	9
25	Overbreak prediction and optimization in tunnel using neural network and bee colony techniques. Engineering With Computers, 2019, 35, 1191-1202.	6.1	61
26	Three hybrid intelligent models in estimating flyrock distance resulting from blasting. Engineering With Computers, 2019, 35, 243-256.	6.1	145
27	Effect of Geological Structure on Flyrock Prediction in Construction Blasting. Geotechnical and Geological Engineering, 2018, 36, 2217-2235.	1.7	21
28	Feasibility of ICA in approximating ground vibration resulting from mine blasting. Neural Computing and Applications, 2018, 29, 457-465.	5.6	105
29	Prediction and minimization of blast-induced flyrock using gene expression programming and firefly algorithm. Neural Computing and Applications, 2018, 29, 269-281.	5.6	54
30	An excavatability classification system for surface excavation in sedimentary rocks. Bulletin of Engineering Geology and the Environment, 2017, 76, 241-251.	3.5	7
31	An optimized ANN model based on genetic algorithm for predicting ripping production. Neural Computing and Applications, 2017, 28, 393-406.	5.6	85
32	Performance evaluation of existing surface excavation assessment methods on weathered sedimentary rock. Bulletin of Engineering Geology and the Environment, 2017, 76, 205-218.	3.5	6
33	Ripping Production Prediction in Different Weathering Zones According to Field Data. Geotechnical and Geological Engineering, 2017, 35, 2381-2399.	1.7	16
34	Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunnelling and Underground Space Technology, 2017, 63, 29-43.	6.2	307
35	Utilizing regression models to find functions for determining ripping production based on laboratory tests. Measurement: Journal of the International Measurement Confederation, 2017, 111, 216-225.	5.0	12
36	Improvement of Problematic Soils with Biopolymerâ€"An Environmentally Friendly Soil Stabilizer. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	207

#	Article	IF	CITATIONS
37	EFFECT OF GEOLOGICAL STRUCTURE AND BLASTING PRACTICE IN FLY ROCK ACCIDENT AT JOHOR, MALAYSIA. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	8
38	Genetic programming and gene expression programming for flyrock assessment due to mine blasting. International Journal of Rock Mechanics and Minings Sciences, 2016, 88, 254-264.	5.8	92
39	Effects of moisture content on the strength of tropically weathered granite from Malaysia. Bulletin of Engineering Geology and the Environment, 2016, 75, 369-390.	3.5	16
40	Rock strength assessment based on regression tree technique. Engineering With Computers, 2016, 32, 343-354.	6.1	62
41	Estimation of air-overpressure produced by blasting operation through a neuro-genetic technique. Environmental Earth Sciences, 2016, 75, 1.	2.7	64
42	Prediction of the strength and elasticity modulus of granite through an expert artificial neural network. Arabian Journal of Geosciences, 2016, 9, 1.	1.3	136
43	Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances. Engineering With Computers, 2016, 32, 189-206.	6.1	104
44	A combination of the ICA-ANN model to predict air-overpressure resulting from blasting. Engineering With Computers, 2016, 32, 155-171.	6.1	123
45	Neuro-fuzzy technique to predict air-overpressure induced by blasting. Arabian Journal of Geosciences, 2015, 8, 10937-10950.	1.3	102
46	Application of two intelligent systems in predicting environmental impacts of quarry blasting. Arabian Journal of Geosciences, 2015, 8, 9647-9665.	1.3	103
47	Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm. Bulletin of Engineering Geology and the Environment, 2015, 74, 873-886.	3.5	209
48	Blast-induced air and ground vibration prediction: a particle swarm optimization-based artificial neural network approach. Environmental Earth Sciences, 2015, 74, 2799-2817.	2.7	162
49	Prediction of blast-induced air overpressure: a hybrid Al-based predictive model. Environmental Monitoring and Assessment, 2015, 187, 666.	2.7	48
50	An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young's modulus: a study on Main Range granite. Bulletin of Engineering Geology and the Environment, 2015, 74, 1301-1319.	3.5	154
51	Prediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approach. Bulletin of Engineering Geology and the Environment, 2015, 74, 745-757.	3.5	162
52	A typical weathering profile of granitic rock in Johor, Malaysia based on joint characterization. Arabian Journal of Geosciences, 2015, 8, 2191-2201.	1.3	15
53	A Novel Approach for Blast-Induced Flyrock Prediction Based on Imperialist Competitive Algorithm and Artificial Neural Network. Scientific World Journal, The, 2014, 2014, 1-11.	2.1	106
54	Indirect measure of shale shear strength parameters by means of rock index tests through an optimized artificial neural network. Measurement: Journal of the International Measurement Confederation, 2014, 55, 487-498.	5 . O	115

ARTICLE IF CITATIONS

55 Assessment of quarry volume using 2-D resistivity imaging method., 2013,,. 0